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Introduction: History

▶ Disconnect between computational work on syntax and
computational work on morphology.

▶ Work on computational syntax traditionally involved work on
parsing based on hand-constructed rule sets.

▶ In the early 1990s, the paradigm shifted to statistical parsing
methods.

▶ Rule formalisms (context-free rules, Tree-Adjoining grammars,
unification-based formalisms, and dependency grammars) remained
much the same, statistical information was added in the form of
probabilities associated with rules or weights associated with
features.
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Introduction: History

▶ Rules and their probabilities were learned from treebanked corpora
(+ some more recent work on inducing probabilistic grammars
from unannotated text)

▶ No equivalent statistical work on morphological analysis (one
exception being Heemskerk, 1993).

▶ Nobody started with a corpus of morphologically annotated words
and attempted to induce a morphological analyzer of the
complexity of a system such as Koskenniemis (1983)

▶ such corpora of fully morphologically decomposed words did not
exist, at least not on the same scale as the Penn Treebank.

▶ Work on morphological induction that did exist was mostly limited
to uncovering simple relations between words, such as the singular
versus plural forms of nouns, or present and past tense forms of
verbs.

▶ Part of the reason for this: handconstructed morphological
analyzers actually work fairly well.
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Ambiguities...

▶ Syntax abounds in structural ambiguity, which can often only be
resolved by appealing to probabilistic information

▶ Example?

▶ The likelihood that a particular prepositional phrase is associated
with a head verb versus the head of the nearest NP

▶ There is ambiguity in morphology too

▶ Example?

▶ It is common for complex inflectional systems to display massive
syncretism so that a given form can have many functions

▶ What’s the difference?

▶ Often this ambiguity is only resolvable by looking at the wider
context in which the word form finds itself, and in such cases
importing probabilities into the morphology to resolve the
ambiguity would be pointless
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Statistical morphology

▶ Increased interest in statistical modeling morphology and the
unsupervised or lightly supervised induction of morphology from
raw text corpora.

▶ One recent piece of work on statistical modeling of morphology is
Hakkani-Tur et al. (2002)

▶ What: n-gram statistical morphological disambiguator for Turkish.

▶ How: break up morphologically complex words and treat each
component as a separate tagged item, on a par with a word in a
language like English.
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Korean morphology

▶ A related approach to tagging Korean morpheme sequences is
presented in Lee et al. (2002).

▶ Formalism: syllable trigrams used to calculate the probable tags for
unknown morphemes within a Korean eojeol, a space-delimited
orthographic word.

▶ For eojeol-internal tag sequences involving known morphemes, the
model uses a standard statistical language-modeling approach.

▶ With unknown morphemes, the system backs off to a
syllable-based model, where the objective is to pick the tag that
maximizes the tag-specific syllable n-gram model.

▶ The model presumes that syllable sequences are indicative of
part-of-speech tags, which is statistically true in Korea

▶ For example, the syllable conventionally transcribed as park is
highly associated with personal names, since Park is one of the the
most common Korean family names.
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Agglutinative languages

▶ Agglutinative languages such as Korean and Turkish are natural
candidates for such approach

▶ In such languages, words can consist of often quite long morpheme
sequences

▶ The sequences obey word-syntactic constraints, and each
morpheme corresponds fairly robustly to a particular
morphosyntactic feature bundle, or tag.

▶ Such approaches are harder to use in more “inflectional” languages
where multiple features tend to be bundled into single morphs.

▶ As a result, statistical n-gram language-modeling approaches to
morphology have been mostly restricted to agglutinative languages.
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Transition to unsupervised methods

▶ Last couple of decades: automatic methods for the discovery of
morphological alternations

▶ particular attention to unsupervised methods
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Morphological learning

▶ First sense: the discovery, from a corpus of data, that the word eat
has alternative forms eats, ate, eaten and eating.

▶ Goal: find a set of morphologically related forms as evidenced in a
particular corpus

▶ Second sense: learn that the past tense of regular verbs in English
involves the suffixation of -ed, and from that infer that a new verb,
such as google, would be googled in the past tense.

▶ Goal: to infer a set of rules from which one could derive new
morphological forms for words for which we have not previously
seen those forms

▶ Which sense is stronger?

▶ The second sense is the stronger sense and more closely relates to
what human language learners do.
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Stronger sense

▶ Earlier supervised approaches to morphology: stronger sense

▶ System by Rumelhart and McClelland (1986) proposed a
connectionist framework which, when presented with a set of
paired present- and past-tense English verb forms, would generalize
from those verb forms to verb forms that it had not seen before.

▶ “generalize” does not mean “generalize correctly” (a lot of
criticism of the Rumelhart and McClelland work)

▶ Other approaches to supervised learning of morphological
generalizations include van den Bosch and Daelemans (1999) and
Gaussier (1999).
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Weaker sense

▶ Supervised approaches assume that the learner is presented with a
set of alternations that are known to be related to one another by
some predefined set of morphological alternations.

▶ How the teacher comes by that set?

▶ This is the question that the work on unsupervised learning of
morphology addresses itself (find the set of alternate forms as
evidenced in a particular corpus).

▶ Once one has a list of alternation exemplars, one could apply a
supervised technique to learn the appropriate generalizations;
(Yarowsky and Wicentowski 2001).

▶ Most of the work in the past ten years has been on unsupervised
approaches, so we will focus in this discussion on these.
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Goldsmith, 2001

▶ Linguistica, minimum description length (MDL) approach

▶ System for learning of affixation alternations.

▶ Available on the Internet

▶ Goldsmiths system starts with an unannotated corpus of text of a
language

▶ The original paper demonstrated the application to English,
French, Spanish, Italian, and Latin and derives a set of signatures
along with words that belong to those signatures.

▶ Signatures are sets of affixes that are used with a given set of
stems.

▶ Example: one signature in English is (using Goldsmiths notation)
NULL.er.ing.s, which includes the stems blow, bomb, broadcast,
drink, dwell, farm, feel, all of which take the suffixes null, -er, -ing
and -s in the corpus that Goldsmith examines.
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Signatures vs. paradigms

▶ Signatures are not equivalent to paradigms.

▶ First reason: NULL.er.ing.s contains not only the clearly
inflectional affixes -ing and -s, but the (apparently) derivational
affix -er.

▶ Whether or not one believes in a strict separation of derivational
from inflectional morphology, most morphologists would consider
endings such as -s and -ing as constituting part of the paradigm of
regular (and most irregular) verbs in English, whereas -er would
typically not be so considered.

▶ Second reason: the set is not complete, the past tense affix is
absent, but it does show up in other signatures, such as
NULL.ed.er.ing.s (for attack, back, demand, and flow).

▶ Summary: it is not trivial to go from signatures to paradigms.

▶ Note: Goldsmith is only concerned with affixation, so no
alternations like blow/blew are in the system.
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Goldsmith: System

▶ Two steps.

▶ The first step derives candidate signatures and signature-class
membership

▶ The second step evaluates the candidates.
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Candidate Generation

▶ The generation of candidates requires a method for splitting words
into potential morphemes.

▶ Based on weighted mutual information, the method first starts by
generating a list of potential affixes.

▶ Starting at the right edge of each word in the corpus, which has
been padded with an end-of-word marker “#”, collect the set of
possible suffixes up to length six (the maximum length of any
suffixes in the set of languages that Goldsmith was considering),
and then for each of these suffixes, compute the following metric,
where Nk here is the total number of k-grams:

Yulia Zinova Computational Morphology: Machine learning of morphology



. . . . . .

Getting the signatures

▶ The first 100 top ranking candidates are chosen

▶ Words in the corpus are segmented according to these candidates

▶ Where that is possible, the best parse for each word was chosen
according to the take-all-splits approach.

▶ Suffixes that are not optimal for at least one word are discarded.

▶ Result: a set of stems and associated suffixes including the null
suffix

▶ The alphabetized list of suffixes associated with each stem
constitutes the signature for that stem.

▶ Remove all signatures associated with but one stem and all
signatures involving one suffix.

▶ Remaining signatures are called regular signatures, and these
constitute the set of suffixes associated with at least two stems.
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Candidate Evaluation

▶ The set of signatures and associated stems constitutes a proposal
for the morphology of the language: it provides suggestions on how
to decompose words into a stem plus suffix(es).

▶ It needs to be evaluated: not all the suggested morphological
decompositions are useful, and a metric is needed to evaluate the
utility of each proposed analysis.

▶ Goldsmith proposes an evaluation metric based on minimum
description length.

▶ The best proposal will be the one that allows for the most compact
description of the corpus (in terms of the morphological
decomposition) and the morphology itself.

▶ This is a standard measure in text compression: a good
compression algorithm is one that minimizes the size of the
compressed text plus the size of the model that is used to encode
and decode that text.
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Goldsmith: testing

▶ Goldsmith tested his method on corpora from English, French,
Italian, Spanish, and Latin.

▶ For each of these languages, he lists the top ten signatures.

▶ Goldsmith also evaluated the results for English and French.

▶ Having no gold standard against which to compare, he evaluated
the results subjectively, classifying the analyses into the categories
good, wrong analysis, failed to analyze, spurious analysis.

▶ Results for English, for 1,000 words, were 82.9% in the good
category, with 5.2% wrong, 3.6% failure, and 8.3% spurious.

▶ Results for French were roughly comparable.
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Schone and Jurafsky, 2001

▶ Uses semantic, orthographic, and syntactic information derived
from unannotated corpora to arrive at an analysis of inflectional
morphology.

▶ The system is evaluated for English, Dutch, and German using the
CELEX corpus (Baayen et al., 1996).

▶ Goldsmith relies solely on orthographic (or phonological) features.
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Semantics?

▶ Without semantic information, it would be hard to tell that ally
should not be analyzed as all+y, and since Goldsmiths approach
does not attempt to induce spelling changes, it would be hard to
tell that hated is not hat+ed.

▶ On the other hand, semantics by itself is not enough.

▶ Morphological derivatives may be semantically distant from their
bases consider reusability versus use so that it can be hard to use
contextual information as evidence for a morphological relationship.

▶ Furthermore, contextual information can be weak for common
function words,

▶ There is effectively no information that would lead one to prevent
as being derived from a+s.
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Schone and Jurafsky, 2001

▶ considers circumfixes

▶ automatically identifies capitalizations by treating them similarly to
prefixes

▶ incorporates frequency information

▶ uses distributional information to help identify syntactic properties,

▶ uses transitive closure to help find variants that may not have been
found to be semantically related but which are related to mutual
variants

▶ Schone and Jurafsky use the term circumfix somewhat loosely to
denote apparently true circumfixes such as the German past
participle circumfix get, as well as combinations of prefixes and
suffixes more generally.
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Procedure: finding affixes

▶ Strip off prefixes that are more common than some predetermined
threshold.

▶ Take the original lexicon, plus the potential stems generated in the
previous step, and build a trie out of them.

▶ Posit potential suffixes wherever there is a branch in the trie,
where a branch is a subtrie of a node where splitting occurs.

▶ Armed with a set of potential suffixes, one can obtain potential
prefixes by starting with the original lexicon, stripping the potential
suffixes, reversing the words, building a trie out of the reversed
words, and finding potential suffixes of these reversed strings,
which will be a set of potential prefixes in reverse.

▶ Identify candidate circumfixes, defined as prefix-suffix combinations
that are attached to some minimum number of stems that are also
shared by other potential circumfixes. The stems here are actually
called pseudostems since, of course, they may not actually
correspond to morphological stems.
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Trie?
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Output

▶ The output of these steps for English, German, and Dutch, with
particular settings for the minima mentioned above, produces a
large set of rules (about 30,000 for English) of which some are
reasonable (e.g. -s → null, -ed → -ing) but many of which are not
(e.g. s- → null, as induced from such seeming alternations as
stick/tick or spark/park.)
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Yarowsky and Wicentowski (2001)

▶ A lightly supervised method for inducing analyzers of inflectional
morphology.

▶ The method consists of two basic steps.

▶ First a table of alignments between root and inflected forms is
estimated from data.

▶ The table might contain the pair take/took, indicating that took is
a particular inflected form of take.

▶ Second, a supervised morphological analysis learner is trained on a
weighted subset of the table.

▶ In considering possible alignment pairs, Yarowsky and Wicentowski
concentrate on morphology that is expressed by suffixes or by
changes in the root (as in take/took).
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