Computational Morphology: Finate State Methods

Yulia Zinova

09 April 2014 - 16 July 2014

Finite state approach

- Finite state approach to morphology is by far the most popular one;
- References: Johnson (1972); Kaplan and Kay (1994); Karttunen (2003)
- ► Two-level morphology: Koskenniemi (1984)

What is a language?

- A language is a set of expressions that are built from a set of symbols from an alphabet.
- An alphabet is a set of letters (or other symbols from a writing system), phones, or words.
- ▶ Regular language is a language that can be constructed out of a finite alphabet (denoted Σ) using ore or more of the following operations:
 - ▶ set union \cup {a,b,c} \cup {c,d} = {a,b,c,d}
 - concatenation · abc · cd = abccd
 - transitive closure * a* denotes the set of sequences consisting of 0 or more a's

Regular language

- ▶ Any finite set of strings from a finite alphabet is a regular language.
- Regular languages can be used to describe a large number of phenomena in natural language.
- ▶ There are morphological constructions that cannot be described by regular languages: phrasal reduplication in Bambara, a language of West Africa (Culy, 1985).

Bambara example

- (1) a. wulu o wulu
 dog MARKER dog
 'whichever dog'
 - b. wulunuinina o wulunuinina dog searcher MARKER dog searcher 'whichever dog searcher'
 - c. manolunyininafilèla o rice searcher watcher MARKER manolunyininafilèla rice searcher watcher 'whichever rice searcher watcher'

Bambara example

- Phrasal reduplication: X-o-X pattern.
- ▶ Why is this a problem for a regular language?

Bambara example

- ▶ Phrasal reduplication: X-o-X pattern.
- Why is this a problem for a regular language?
- ▶ Because the nominal phrase is in principle unbounded, so the construction involves unbounded copying.
- Unbounded copying can be described neither by regular nor by contex-free languages.

Regular languages

- ▶ Σ^* universal language; consists of all strings that can be constructed out of the alphabet Σ ;
- ▶ ϵ the empty string; Σ * contains ϵ ;
- ▶ ∅ consists of no strings;
- Question:

Does \emptyset include ϵ ?

Regular languages

- ▶ Σ^* universal language; consists of all strings that can be constructed out of the alphabet Σ ;
- ▶ ϵ the empty string; Σ * contains ϵ ;
- ▶ ∅ consists of no strings;
- Question:

Does \emptyset include ϵ ?

Answer:

No: ϵ is a string and \emptyset contains **no** strings.

Regular languages: more operations

- Regular languages are also closed under the following operations:
 - ▶ intersection ∩

$${a,b,c} \cap {c,d} = {c}$$

difference —

$${a,b,c} - {c,d} = {a,b}$$

ightharpoonup complementation \overline{X}

$$\overline{A} = \Sigma^* - A$$

• string reversal X^R $(abc)^R = cba$

- Regular languages are commonly denoted via regular expressions.
- Regular expressions involve a set of reserved symbols as notation:
 - *: zero or more;
 - ?: zero or one;
 - ► +: one or more;
 - ▶ | or ∪: disjunction
 - →: negation
- Question:

Which language is denoted by

▶ (abc)?

- Regular languages are commonly denoted via regular expressions.
- Regular expressions involve a set of reserved symbols as notation:
 - *: zero or more;
 - ?: zero or one;
 - ► +: one or more;
 - ▶ | or U: disjunction
 - →: negation
- Question:

Which language is denoted by

• (abc)? **Answer**: $\{\epsilon, abc\}$

- Regular languages are commonly denoted via regular expressions.
- Regular expressions involve a set of reserved symbols as notation:
 - *: zero or more;
 - ?: zero or one:
 - ► +: one or more;
 - ▶ | or U: disjunction
 - →: negation
- Question:

- (abc)? **Answer**: $\{\epsilon, abc\}$
- ▶ (a|b)

- Regular languages are commonly denoted via regular expressions.
- Regular expressions involve a set of reserved symbols as notation:
 - *: zero or more;
 - ?: zero or one:
 - ► +: one or more;
 - ▶ | or ∪: disjunction
 - →: negation
- Question:

- (abc)? **Answer**: $\{\epsilon, abc\}$
- (a|b) Answer: $\{a,b\}$

- Regular languages are commonly denoted via regular expressions.
- Regular expressions involve a set of reserved symbols as notation:
 - *: zero or more;
 - ?: zero or one:
 - ► +: one or more;
 - ► | or U: disjunction
 - →: negation

Question:

- (abc)? **Answer**: $\{\epsilon, abc\}$
- ▶ (a|b) **Answer**: {a, b}
- ▶ (¬a)*

- Regular languages are commonly denoted via regular expressions.
- Regular expressions involve a set of reserved symbols as notation:
 - *: zero or more;
 - ?: zero or one:
 - +: one or more;
 - ▶ | or ∪: disjunction
 - →: negation

Question:

- (abc)? **Answer:** $\{\epsilon, abc\}$
- ▶ (a|b) **Answer**: {a, b}
- ► (¬a)* Answer: the set of strings with zero or more occurences of anything rather than a

Exercise

- ► Find regular expressions over {0,1} that determine the following languages:
 - 1. all strings that contain an even number of 1's;
 - 2. all strings that contain an odd number of 0's.

Finite state automaton

- Finite-state automata are computational devices that compute regular languages.
- ▶ A finite-state automaton is a quintuple $M = (Q, s, F, \Sigma, \delta)$ where:
 - 1. Q is a finite set of states;
 - 2. s is a designated initial state;
 - 3. F is a designated set of final states;
 - 4. Σ is an alphabet of symbols;
 - 5. δ is a transition relation from $Q \times (\Sigma \cup \epsilon)$ to Q (from state/symbol pairs to states).
- ▶ $A \times B$ denotes the cross-product of sets A and B $\{a,b\} \times \{c,d\} = \{\langle a,c \rangle, \langle b,c \rangle, \langle a,d \rangle, \langle b,d \rangle\}$

FSA: Kleene's theorem

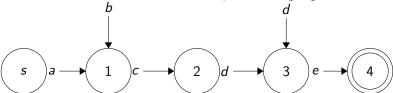
- ► Kleene's theorem states that every regular language can be recognized by a finite-state automaton.
- Similarly, every finite state automaton recognizes a regular language.

FSA: simple example

▶ **Task:** draw an automaton that accepts the language ab^*cd^+e

FSA: simple example

▶ **Task:** draw an automaton that accepts the language ab^*cd^+e



Regular relations

- Regular relations express relations between sets of strings.
- ► A regular n-relation is defined as follows:
 - 1. ∅ is a regular n-relation;
 - 2. For all symbols $a \in [(\Sigma \cup \epsilon) \times ... \times (\Sigma \cup \epsilon)], \{a\}$ is a regular n-relation;
 - 3. If R_1 , R_2 , and R are regular n-relations, then so are
 - 3.1 $R_1 \cdot R_2$, the *n-way concatenation* of R_1 and R_2 : for every $r_1 \in R_1$ and $r_2 \in R_2$, $r_1r_2 \in R_1 \cdot R_2$
 - 3.2 $R_1 \cup R_2$
 - 3.3 R^* , the *n*-way transitive (Kleene) closure of R.
- ▶ For most applications in speech and language processing n = 2.

Finite state transducer

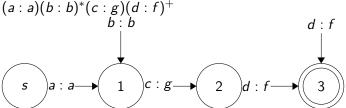
- A 2-way finite-state transducer is a quintuple $M = (Q, s, F, \Sigma \times \Sigma, \delta)$ where:
 - 1. Q is a finite set of states;
 - 2. s is a designated initial state;
 - 3. F is a designated set of final states;
 - 4. Σ is an alphabet of symbols;
 - 5. δ is a transition relation from $Q \times (\Sigma \cup \epsilon \times \Sigma \cup \epsilon)$ to Q.

FST example

- With a transducer, a string matches against the input symbols on the arcs, while at the same time the machine is outputting the corresponding output symbols.
- ► **Task:** draw a FST that computes the relation $(a:a)(b:b)^*(c:g)(d:f)^+$

FST example

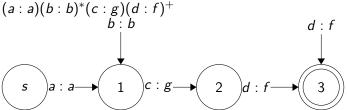
- With a transducer, a string matches against the input symbols on the arcs, while at the same time the machine is outputting the corresponding output symbols.
- ► Task: draw a FST that computes the relation



Question: What will it produce for the string abbcddd?

FST example

- With a transducer, a string matches against the input symbols on the arcs, while at the same time the machine is outputting the corresponding output symbols.
- ► Task: draw a FST that computes the relation



Question: What will it produce for the string abbcddd? Answer: abbgfff.

Closure properties of regular languages and relations

Property	Languages	Relations
concatenation	yes	yes
Kleene closure	yes	yes
union	yes	yes
intersection	yes	no
difference	yes	no
composition	_	yes
inversion	_	no

- ► Composition: if f and g are two regular relations and x a string, then $[f \circ g](x) = f(g(x))$
- ▶ Inversion: swapping the input and the output symbols on the arcs

- Culy, C. (1985). The complexity of the vocabulary of bambara. *Linguistics and Philosophy*, pages 345–351.
- Johnson, C. D. (1972). Formal aspects of phonological description. Mouton The Hague.
- Kaplan, R. M. and Kay, M. (1994). Regular models of phonological rule systems. *Computational linguistics*, **20**(3), 331–378.
- Karttunen, L. (2003). Finite-state morphology.
- Koskenniemi, K. (1984). A general computational model for word-form recognition and production. In *Proceedings of the 10th International Conference on Computational Linguistics and 22nd annual meeting on Association for Computational Linguistics*, pages 178–181. Association for Computational Linguistics.