Computational Morphology

Morphological Operations: Prosodic Circumscription

Lecturer: Yulia Zinova
Date: 07.05.2014

Literature

- McCarthy, J. and Prince, A., 1990. „Foot and word in prosodic morphology: The Arabic broken plural." Natural Language and Linguistic Theory 8, 209-284.
- Roark, B. and Sproat, R., 2007. Computational Approach to Morphology and Syntax. New York, NY: Oxford University Press.

Prosodic Circumscription

- Prosodic Circumscription of Domains:
,"The domain to which morphological operations apply may be circumscribed by prosodic criteria as well as by the more familiar morphological ones. In particular, the minimal word within a domain may be selected as the locus of morphological transformation in lieu of the whole domain."

McCarthy and Prince (1990)

Prosodic Circumscription

The base (B) is factored into a prosodically defined unit $(B:)$ concatenated ${ }^{(*)}$ with residue ($B /$):

Prosodic Circumscription

- Prosodic morphological operations may either apply to the prosodically defined unit B : or to the residue $B /$.
\square Given an operation O, we can define operations O : and $O /$ as follows:
(1) $\mathrm{O}:=\mathrm{O}(\mathrm{B}:)^{*} \mathrm{~B} / \quad$ [positive circumscription]
(2) $\mathrm{O} /=\mathrm{B}:{ }^{*} \mathrm{O}(\mathrm{B} /) \quad$ [extrametricality]
- In (1) we factor the base into B : and $B /$, apply O to $B:$; and reconstititute O (B:) with $B /$. We define B : as the prosodic domain to which operations apply.
- In (2) we factor the base, apply O to B/ and then reconstitute the result. We defined B : as prosodic domain to ignore and apply the operation to the residue.

Prosodic Circumscription

- Positive circumscription and extrametricality are common phenomena in morphology.
- An example for extrametricality is infixation in many Philippine languages - we ignore the first onset of a word, and attache the infix as a prefix to the reminder. Example 1:

$$
\begin{array}{ll}
\text { tawag } & \text { | call } \\
\text { tumawag } & \text { | call (perfective) }
\end{array}
$$

- Excercise 1: draw a transducer where the affix um is placed either as an infix, like in the example above, when it proceedes after a consonant (C), or as an prefix, when the first letter of the infinite form is a vowel (V).

Prosodic Circumscription

- Excercise 1:

C-consonant
V-vowel

Id (Σ^{*}) - regular language

Prosodic Circumscription

- As we can see in example 1, we can characterize the prosodic circumscription in terms of the finite-state operation of composition.
- The transducer \mathbf{T} from example 1 can be defined as follows:

$$
\mathrm{T}=\mathrm{C} ?[\varepsilon: u m] \vee \Sigma^{*}
$$

- As for the example 1 (t-um-awag), we can characterize -um- either as prefixing to the residue (-awag), or as suffixing to the prosodically defined unit t-.

Prosodically Governed Concatenation

- An example of affixes with prosodic restrictions on their attachment are the English comparative affix -er and the superlative affix -est. These affixes are restricted to bases that are monosyllabic or disyllabic adjectives. E.g.:

fat	fatter	fattest
yellow	yellower	yellowest
curious	*curiouser	*curiousest

- We can characterize the base to which the comparative affix attaches as follows:

$$
B=C^{*} V C^{*}\left(\mathrm{VC}^{*}\right) ?
$$

Prosodically Governed Concatenation

- The comparative affix κ is characterized as follows:

$$
\kappa=\mathrm{B}[\varepsilon: e r][+\mathrm{COMP}]]
$$

where B ist the base $\mathrm{B}=\mathrm{C}^{*} \mathrm{VC}^{*}\left(\mathrm{VC}^{*}\right)$?
\square Composing a base adjective A with κ would yield a non-null output 「 just in case the base A matches B:

$$
\Gamma=A \circ \kappa
$$

- More problematic are cases where the affix provides the template for the stem, insetad of selecting for stems that have certain prosodic forms (see exercise 2).

Prosodically Governed Concatenation

\square Exercise 2: what are the affixation rules in the following example (for the template affixes)? Draw a transducer for -? a affixation.

ROOT	Neutral affixes		Template affixes	
	- -al	$-\dagger$	-inay	-?aa
caw	caw-al	caw- \dagger	caw-inay	cawaa-?aa-n
cuum	cuum-al	cuum- \dagger	cum-inay	cumuu-?aa-n
hoyoo	hoyoo-al	hoyoo- \dagger	hoy-inay	hoyoo-?aa-n
diiyl	diiylal	diiyl- \dagger	diyl-inay	diyiil-?aa-n
? ?ilk	? ?ilk-al	? ?ilk- \dagger	? ?ilk-inay	? ?iliik-?aa-n
hiwiit	hiwiit-al	hiwiit- \dagger	hiwt-inay	hiwiit-?aa-n

Prosodically Governed Concatenation

- Exercise 2: the affix -inay requires the stem to match the template CVC(C). The template T for CVC(C) can be characterized as follows:

$$
\mathrm{T}_{\mathrm{CVC}(\mathrm{C})}=\mathrm{CV}[\mathrm{~V}: \varepsilon]^{*} \mathrm{C}[\mathrm{~V}: \varepsilon]^{*} \mathrm{C} \text { ? }
$$

\checkmark only the first vowel ist preserved
\checkmark any vowels after the second consonant are deleted

E Examples for composing $\mathrm{T}_{\mathrm{CVC}(\mathrm{C})}$ with particular stems:

$$
\begin{aligned}
& \text { hoyoo o } T_{\mathrm{CVC}(\mathrm{C})}=\text { hoy } \\
& \text { hiwiit } \circ \mathrm{T}_{\mathrm{CVC}(\mathrm{C})}=\text { hiwt }
\end{aligned}
$$

Prosodically Governed Concatenation

- Exercise 2: the affix -? aa requires the template CVCVV(C). The template T for CVCVV(C) can be characterized as follows:

$$
\mathrm{T}_{\mathrm{CVCVV}(\mathrm{C})}=\mathrm{CV}[\mathrm{~V}: \varepsilon] ? \mathrm{C}(\mathrm{~V} \cup[\varepsilon: \mathrm{V}])(\mathrm{V} \cup[\varepsilon: \mathrm{V}]) \mathrm{C} \text { ? }
$$

\checkmark forces the first \vee to match the vowel of the root
\checkmark allows no second vowel in the root‘s first syllable
\checkmark allows two vowels followed optionally by a consonant

Prosodically Governed Concatenation

- Simplified trandsucer for the suffix -? an and template CVCVV(C) (only for the vowel o):

