
Computational Semantics with Haskell

Yulia Zinova

Winter 2016/2017

We follow Van Eijck and Unger 2010, electronic access from the library

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 1

/ 24

What next

Overview

I We will talk about some example languages:
I languages for playing simple games
I logical languages
I fragments of programming languages
I fragments of natural language

I When we will be dealing with the semantics of natural languages, we will
use predicate logic.

I As a preparation, we will have a look at the propositional and predicate
logic: how they can be used to represent the meaning of natural
language sentences and how to implement their syntax in Haskell.

I Download this file:
http://www.computational-semantics.eu/FSynF.hs

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 2

/ 24

http://www.computational-semantics.eu/FSynF.hs

Grammars for Games

Sea Battle

I Rules:
1. 2 players
2. 2 grids per player, each with 10 x 10 fields: 1 – 10 and A – J
3. players do not see each others’ grids
4. at the beginning, each player distributes their ships over one of the grids
5. fleet: a battleship (5 squares), a frigate (4 squares), two submarines (3

squares), a destroyer (2 squares).
6. the grid with ships is also used to record enemy shots
7. the other grid is used to record shots fired at the enemy

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 3

/ 24

Grammars for Games

Sea Battle: Grammar

I column → A | B | C | D | E | F | G | H | I | J
I row → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
I attack → column row
I ship → battleship | fregate | submarine | destroyer
I reaction → missed | hit ship | sunk ship | lost_battle
I turn → arrack reaction

Exercise: revise the grammar in such a way that it is explicit that the game
ends once one of the players is defeated.

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 4

/ 24

Grammars for Games

Mastermind

I Mastermind is a code-breaking game for two players
I Code-maker decides on a row of coloured pegs (fixed set of colours)
I Code-breaker tries to guess the color pattern
I Each turn: codebreaker names a sequence; codemaker replies with black

for each correct colour-place combination and with white for each correct
colour in the wrong place.

I Goal :find out the sequence

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 5

/ 24

Grammars for Games

Mastermind: Grammar

I colour → red | yellow | green | lila | blue | orange
I answer → black | white
I guess → colour colour colour colour
I reaction → {answer}
I turn → guess reaction
I game → turn | turn game

Exercise: revise the grammar in order to guarantee that a game has at
most 4 turns
Exercise: change the definition of reaction to ensure that the grammar
generates a finite language

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 6

/ 24

Grammars for Games

Grammars for Games: Exercises

I Write the grammar for chess.
I Write the grammar for Bingo!
I Bingo rules:

I A bingo ticket is a card with a 5x5 grid. 5 columns on the card correspond
to 5 letters of the name of the game "B-I-N-G-O".

I 24 numbers per each card are random from the limits of 1 to 75. The
center of the card is left empty.

I B column: from 1 to 15, I column: from 16 to 30, N column: from 31 to
45, G column: from 46 to 60, O column: from 61 to 75

I Round: the caller selects a random number and calls it. All the players
mark it on their tickets.

I The winner is determined when one or several of the players complete the
winning bingo pattern.

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 7

/ 24

A Fragment of English

A fregment of English

I We want to write rules for English sentences like the following
I The girl laughed.
I No dwarf admired some princess that shuddered.
I Every girl some boy loved cheered.
I The wizard that helped Snow White defeated the giant.
I We need rules for: subject-predicate structure of sentences, internal

structure of noun phrases, common nouns with and without relative
clauses.

I Let us write the grammar!

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 8

/ 24

A Fragment of English

A language of talking about classes

I Consider the following interaction engine for an inference engine
(program the handles interaction with a knowledge base):

I Questions (or queries) are of the form: Are all PN PN? Are no PN PN?
Are any PN PN? Are any PN not PN? What about PN?

I Statements are of the form: All PN are PN. No PN are PN. Some PN
are PN. Some PN are not PN.

I PN = plural noun
I We will later provide a semantics for this fragment so that it could be

used.

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 9

/ 24

Propositional Logic

Propositional logic

I No we will look at a grammar for propositional logic, where we use p, q,
r, p’, q’, r’, p”, q”, r”, ... to indicate atomic propositions

I atom → p | q | r | atom
I F → atom | ¬ F | (F ∨ F) | (F ∧ F)

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 10

/ 24

Propositional Logic

Principle of structural induction

I If you need to prove that every formula of propositional logic has
property P, you need to use induction

I Induction base: Every atom has property P
I Induction step: If F has property P, so does ¬ F, if F1 and F2 have

property P, then so do (F1 ∨ F2) and (F1 ∧ F2)

I Exercise: Show that every propositional formula has an equal number of
left and right parenthesis

I Exercise: Show that propositional formulas have only one parse tree

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 11

/ 24

Propositional Logic

Making life easier

I The ‘official’ way of writing propositional formulas is a bit clumsy
I We will use p2 instead of p”
I We will often omit parenthesis when it does not result in ambiguity

(conjunction and disjunction)
I 2 abbreviations: implication and equivalence:
I Implication: write F1 → F2 for ¬(F1 ∧ ¬F2)

I Equivalence: write F1 ↔ F2 for (F1 → F2) ∧ (F2 → F1)

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 12

/ 24

Propositional Logic

Translating from natural language to propositional logic

I If it rains and the sun is shining, then there will be a rainbow.
I The wizard polishes his hand and learns a new spell, or he is lazy.
I The wizard will deal with the devil only if he has a plan to outwit him.
I If neither unicorns nor dragons exist, then neither do goblins.
I You can either have ice cream or candy floss, but not both.
I Define a connective ⊕ for exclusive disjunction using the already defined

connectives.

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 13

/ 24

Propositional Logic

Polish notation

I Formulas of propositional logic can be written without parenthesis, if we
use prefix or postfix notation.

I Prefix notation is also called Polish notation.
I F → atom | ¬ F | ∨FF | ∧FF
I Exercise: translate ∧ ∨ pqr into infix notation
I Exercise: use the principle of structural induction to prove that formulas

of propositional logic in infix notation are uniquely readable

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 14

/ 24

Propositional Logic

Haskell implementation

I Exercise: Implement a function countOperations for computing a number
of operations in the formula

I Exercise: Implement a function listAtoms that collects the names of
propositional atoms that occur in a formula.

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 15

/ 24

Predicate logic

Predicate logic

I In propositional logic, the following two sentences will be not related:
1. Every prince saw a lady
2. Some prince saw a beautiful lady

I To capture the internal structure of such sentences, we need predicate
logic.

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 16

/ 24

Predicate logic

Predicate logic aka first-order (predicate) logic

I Predicate logic is an extension of propositional logic with structured basic
propositions and quantifications:
1. A structured basic proposition consists of an n-ary predicate followed with n

variables.
2. A universally quantified formula consists of the symbol ∀ followed by a

variable followed by a formula.
3. An existentially quantified formula consists of the symbol ∃ followed by a

variable followed by a formula.
4. Other ingredients are as in propositional logic

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 17

/ 24

Predicate logic

Predicate logic: definition

I Definition in assumption that predicates have arity not more than 3:
v → x | y | z | v’
P → P | P’
R → R | R’
S → S | S’
atom → P v | R v v | S v v v
F → atom | (v = v) | ¬ F | F ∧ F | F ∨ F | ∀ v F | ∃ v F

I Poll! http://directpoll.com/r?
XDbzPBd3ixYqg8pA3St08d1irQ6lHS0WJlPc1h1i

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 18

/ 24

http://directpoll.com/r?XDbzPBd3ixYqg8pA3St08d1irQ6lHS0WJlPc1h1i
http://directpoll.com/r?XDbzPBd3ixYqg8pA3St08d1irQ6lHS0WJlPc1h1i

Predicate logic

Bound variables

I In a formula ∀xF (or ∃xF), the quantifier occurrence binds all
occurrences of x in F that are not bound by an occurrence of ∀x or ∃x
inside F.

I Syntactic definition:an occurrence of ∀x or ∃x in a formula F binds an
occurrence of x in F if in the syntax tree for F the occurrence ∀x (or ∃x)
c-commands x, and inside F there are no other occurrences of ∀x or ∃x
that c-command x.

I A predicate logic formula is called open if it contains at least one variable
occurrence which is free. If all variable occurrences are bound, the
formula is called closed/a predicate logical sentence.

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 19

/ 24

Predicate logic

Predicate logic

I Exercise: write a formula that represents the following sentences:
1. Some prince saw a beautiful lady.
2. Every prince saw a lady.

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 20

/ 24

Predicate logic

Predicate logic formulas in Haskell

I We will combine predicates with lists of variables → flexible arity
v → x | y | z | v’
vlist → [] | v: vlist
P → P | P’
atom → P vlist
F → atom | v = v | ¬ F | ∧ Flist | ∨ Flist | ∀ v F | ∃ v F
Flist → [] | F: Flist

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 21

/ 24

Predicate logic

Predicate logic formulas in Haskell: Exercises

I Write a function sentence that checks whether a formula is a sentence.
I Write a function noNegImpl that replaces each formula by an equivalent

one without occurrences of Impl and Neg

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 22

/ 24

Predicate logic

I

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 23

/ 24

Predicate logic

I

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 24

/ 24

Predicate logic

References:
Van Eijck, J. and Unger, C. (2010). Computational semantics with
functional programming . Cambridge University Press.

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 24

/ 24

	What next
	Grammars for Games
	A Fragment of English
	Propositional Logic
	Predicate logic

