
Computational Semantics with Haskell

Yulia Zinova

Winter 2016/2017

We follow Van Eijck and Unger 2010, electronic access from the library

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 1

/ 12



Model checking with predicate logic

Architecture

I Predicate logic → semantic representation language
I Models of predicate logic → Haskell data types
I Interpreting predicate logic languages in appropriate models:

1. construct a logical form from a natural language expression
2. evaluate the logical form with respect to a model

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 2

/ 12



Translating linguistic form into logic

Linguistic form to logic

I Funny properties:
I Alice walked on the road implies that someone walked on the road
I No one walked on the road does not imply that someone walked on the road

I So the structure of the two sentences must differ → first-order predicate
logic

I Logical translation for
Every dwarf loved Goldilocks.

I ∀x(Dwarf x → Love x g)
I What is strange? What does the logical form say?
I All objects in the domain of discourse have the property of either not

being dwarfs or being objects who loved Goldilocks.
I The constituent every dwarf disappeared!

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 3

/ 12



Translating linguistic form into logic

Linguistic form to logic

I Funny properties:
I Alice walked on the road implies that someone walked on the road
I No one walked on the road does not imply that someone walked on the road

I So the structure of the two sentences must differ → first-order predicate
logic

I Logical translation for
Every dwarf loved Goldilocks.

I ∀x(Dwarf x → Love x g)
I What is strange? What does the logical form say?

I All objects in the domain of discourse have the property of either not
being dwarfs or being objects who loved Goldilocks.

I The constituent every dwarf disappeared!

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 3

/ 12



Translating linguistic form into logic

Linguistic form to logic

I Funny properties:
I Alice walked on the road implies that someone walked on the road
I No one walked on the road does not imply that someone walked on the road

I So the structure of the two sentences must differ → first-order predicate
logic

I Logical translation for
Every dwarf loved Goldilocks.

I ∀x(Dwarf x → Love x g)
I What is strange? What does the logical form say?
I All objects in the domain of discourse have the property of either not

being dwarfs or being objects who loved Goldilocks.

I The constituent every dwarf disappeared!

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 3

/ 12



Translating linguistic form into logic

Linguistic form to logic

I Funny properties:
I Alice walked on the road implies that someone walked on the road
I No one walked on the road does not imply that someone walked on the road

I So the structure of the two sentences must differ → first-order predicate
logic

I Logical translation for
Every dwarf loved Goldilocks.

I ∀x(Dwarf x → Love x g)
I What is strange? What does the logical form say?
I All objects in the domain of discourse have the property of either not

being dwarfs or being objects who loved Goldilocks.
I The constituent every dwarf disappeared!

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 3

/ 12



Translating linguistic form into logic

Believes

I Proper names and quantified noun phrases combine with a predicate in
different ways

I Therefore, linguistic form of natural language is misleading
I But: if we use lambda calculus where natural language constituents

correspond to typed expressions that combine with one another as
functions and arguments

I As a result, fully unreduced expressions directly correspond to language
elements and account for the observed differences

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 4

/ 12



Predicate Logic as Representation Language

Representations with predicate logic

I Type of entities is represented by terms
I Type of truth values is represented by formulas
I type LF = Formula Term
I Our fragment: declarative sentences with meaning that can be

represented with predicate logic

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 5

/ 12



Predicate Logic as Representation Language

Representing rules

I Recall our English grammar fragment in BNF
I First rule S → NP VP
I Should we represent NP as a function that takes a VP representation as

argument, or vice versa?
I VP representations must have a functional type, as VPs denote properties
I VP type: Term → LF
I Types for Goldilocks and every boy?

I Let us explore the representations...

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 6

/ 12



Predicate Logic as Representation Language

Representing rules

I Recall our English grammar fragment in BNF
I First rule S → NP VP
I Should we represent NP as a function that takes a VP representation as

argument, or vice versa?
I VP representations must have a functional type, as VPs denote properties
I VP type: Term → LF
I Types for Goldilocks and every boy?
I Let us explore the representations...

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 6

/ 12



Predicate Logic as Representation Language

Representing a model for predicate logic

I We need a domain of entities and suitable interpretations of names and
predicates

I Domain: individuals A . . . Z and Unspec
I Simple names are interpreted as entities
I Common nouns and intransitive verbs are interpreted as properties of

entities

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 7

/ 12



Predicate Logic as Representation Language

Predicates

I Transitive verbs are interpreted s relations between entities
I Define one-, two-, and three-place predicates
I Currying is the conversion of a function of type ((a,b) → c) to one of

type a → b → c
I Uncurrying is the converse operation.
I curry and uncurry are predefined in Prelude
I Passivization: the agent of the action is dropped

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 8

/ 12



Predicate Logic as Representation Language

Exercises

I Consider the verbs help and defeat and the noun phrases Alice, Snow
White, every wizard, a dwarf. For every sentence of the form NP (V NP)
with these items check whether it is true of false in the given model.

I Check how passivize works by applying it to the predicates admire
and help.

I Define another passivization function that works for three-place
predicates.

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 9

/ 12



Predicate Logic as Representation Language

Evaluating formulas in models

I Up to now we specified how to represent models for predicate logic.
I The next thing is to evaluate formulas with respect to these models.
I We need interpretation functions and variable assignments
I One interpretation function for relation of different arities
I An interpretation function is a function from relation names to

appropriate relations in the model

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 10

/ 12



Predicate Logic as Representation Language

Variable assignments

I Now we need to implement variable assignments (variable lookup)
I Example of variable assignment: ass0 - map every variable to object A
I ass1 - take ass0 but map y to B
I Can be modified further

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 11

/ 12



Predicate Logic as Representation Language

Domain and the evaluation function

I Two assumptions: allows tests for equality, can be enumerated
I To check an infinite domain: as Haskell only evaluates something when it

is needed, an open list can be an argument, but “forall" is not possible

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 12

/ 12



Predicate Logic as Representation Language

References:
Van Eijck, J. and Unger, C. (2010). Computational semantics with

functional programming . Cambridge University Press.

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 12

/ 12


	Model checking with predicate logic
	Translating linguistic form into logic
	Predicate Logic as Representation Language

