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Model checking with predicate logic

Architecture

I Predicate logic → semantic representation language
I Models of predicate logic → Haskell data types
I Interpreting predicate logic languages in appropriate models:

1. construct a logical form from a natural language expression
2. evaluate the logical form with respect to a model
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Translating linguistic form into logic

Linguistic form to logic

I Funny properties:
I Alice walked on the road implies that someone walked on the road
I No one walked on the road does not imply that someone walked on the road

I So the structure of the two sentences must differ → first-order predicate
logic

I Logical translation for
Every dwarf loved Goldilocks.

I ∀x(Dwarf x → Love x g)
I What is strange? What does the logical form say?
I All objects in the domain of discourse have the property of either not

being dwarfs or being objects who loved Goldilocks.
I The constituent every dwarf disappeared!
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Translating linguistic form into logic

Believes

I Proper names and quantified noun phrases combine with a predicate in
different ways

I Therefore, linguistic form of natural language is misleading
I But: if we use lambda calculus where natural language constituents

correspond to typed expressions that combine with one another as
functions and arguments

I As a result, fully unreduced expressions directly correspond to language
elements and account for the observed differences
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Predicate Logic as Representation Language

Representations with predicate logic

I Type of entities is represented by terms
I Type of truth values is represented by formulas
I type LF = Formula Term
I Our fragment: declarative sentences with meaning that can be

represented with predicate logic
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Predicate Logic as Representation Language

Representing rules

I Recall our English grammar fragment in BNF
I First rule S → NP VP
I Should we represent NP as a function that takes a VP representation as

argument, or vice versa?
I VP representations must have a functional type, as VPs denote properties
I VP type: Term → LF
I Types for Goldilocks and every boy?

I Let us explore the representations...
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Predicate Logic as Representation Language

Representing a model for predicate logic

I We need a domain of entities and suitable interpretations of names and
predicates

I Domain: individuals A . . . Z and Unspec
I Simple names are interpreted as entities
I Common nouns and intransitive verbs are interpreted as properties of

entities
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Predicate Logic as Representation Language

Predicates

I Transitive verbs are interpreted s relations between entities
I Define one-, two-, and three-place predicates
I Currying is the conversion of a function of type ((a,b) → c) to one of

type a → b → c
I Uncurrying is the converse operation.
I curry and uncurry are predefined in Prelude
I Passivization: the agent of the action is dropped
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Predicate Logic as Representation Language

Exercises

I Consider the verbs help and defeat and the noun phrases Alice, Snow
White, every wizard, a dwarf. For every sentence of the form NP (V NP)
with these items check whether it is true of false in the given model.

I Check how passivize works by applying it to the predicates admire
and help.

I Define another passivization function that works for three-place
predicates.
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Predicate Logic as Representation Language

Evaluating formulas in models

I Up to now we specified how to represent models for predicate logic.
I The next thing is to evaluate formulas with respect to these models.
I We need interpretation functions and variable assignments
I One interpretation function for relation of different arities
I An interpretation function is a function from relation names to

appropriate relations in the model
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Predicate Logic as Representation Language

Variable assignments

I Now we need to implement variable assignments (variable lookup)
I Example of variable assignment: ass0 - map every variable to object A
I ass1 - take ass0 but map y to B
I Can be modified further
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Predicate Logic as Representation Language

Domain and the evaluation function

I Two assumptions: allows tests for equality, can be enumerated
I To check an infinite domain: as Haskell only evaluates something when it

is needed, an open list can be an argument, but “forall" is not possible
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Predicate Logic as Representation Language
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