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Functional Programming with Haskell

The programming language Haskell

I Member of Lisp family together with Scheme, ML, Occam, Clean, Erlang
I Based on lambda calculus (the whole family)
I Functions are everything in Haskell: they can be arguments and results of

other functions
I Functions can be recursive
I Arguments are evaluated only when needed (if at all) – lazy evaluation
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Functional Programming with Haskell

What we need

I An interpreter or compiler
I An interpreter is a system that allows you to execute function definitions

interactively
I On computers here: use Windows 10
I On your laptop: go to www.haskell.org/downloads and get either the

minimum package or the whole platform
I Follow the link to the GHCi (Glasgow Haskell Compiler) manual
I Task: find the command that one calls the compiler with.
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Functional Programming with Haskell

First Experiments

I The prompt Prelude means that only the predefined functions from the
Haskell Prelude are available

I Here is the Haskell wiki: https://wiki.haskell.org/Haskell
I First commands:

I :l〈file name〉 – load a file or module
I :r – to reload the currently loaded file
I :t〈expression〉 – display the type of an expression
I :q quit the compiler
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Functional Programming with Haskell

First experiments

I Interpreter as a calculator: let us calculate the number of seconds in a
year

I Try several calculations, find out the precedence order of the operations
+, −, ∗, ,̂ /

I How does the interpreter read 2̂3̂4?
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Functional Programming with Haskell

Define your own function

I Define and use functions:

let square x = x * x in square 3

I Or use lambda abstraction:

(\ x -> x * x) 4

I Or define the function in a text file:

square :: Int -> Int
square x = x * x
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Functional Programming with Haskell

Load the code

I Download http://www.computational-semantics.eu/FPH.hs
I Load it: :l FPH
I Play with the function square
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Functional Programming with Haskell

Basic types

I Characters – Char, single quotes
I String – String (equivalent to [Char]), double quotes
I List of integers – [Int]
I Empty string = empty list
I Boolean – Bool

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 8

/ 23



Functional Programming with Haskell

Putting items in the list

"Hello World!"
[’H’, ’e’, ’l’, ’l’, ’o’, ’ ’, ’W’, ’o’, ’r’, ’l’, ’d’, ’!’]
’H’:’e’:’l’:’l’:’o’:’ ’:’W’:’o’:’r’:’l’:’d’:’!’: []

What happens? What is the type of the colon operator ‘:’?

Char -> [Char] -> [Char]
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Functional Programming with Haskell

Recursion

I Look at the hword function
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Functional Programming with Haskell

Boolean operations

I Conjunction is & &
I Disjunction is | |
I Negation is not
I Which types do they have?
I For a prefix version of a two-place function, use brackets
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Functional Programming with Haskell

Infix operators

I bright & & beautiful = (& &) bright beautiful
I x op y = (op) x y
I (op x) – the operation resulting from applying op to its right hand side

argument
I (x op) – the operation resulting from applying op to its left hand side

argument
I http://directpoll.com/r?

XDbzPBd3ixYqg8NGqyk61sB4bD4jMvNsRdQsGg7pFh
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Functional Programming with Haskell

Type polymorphism

id :: a -> a
id x = x

I Check the type of the concatenation function (++)
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Functional Programming with Haskell

Recursion

I What is recursion?

I A recursive function calls itself, but without infinite regress
I How do we make sure it tops?
I Base case that does not call the function
I Examine the function story. Try putStrLn (story 5). What about

putStrLn (story (-1))
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Functional Programming with Haskell

List types and list comprehension

I Have look at the type of the colon operation. What does it mean?

I We combine an element of some type with a list of elements of the same
type

head : : [a] -> a
head (x:_) = x

tail : : [a] -> [a]
tail (_:xs) = xs
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Functional Programming with Haskell

List patterns

I The underscore matches any object
I The list pattern [] matches empty list
I The list pattern [x] matches any singleton list
I The list pattern (x:xs) matches any non-empty list
I http://directpoll.com/r?

XDbzPBd3ixYqg81uUQf0SHnX2XEtW5X2bna2QqHzPr
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Functional Programming with Haskell

Lists

I Lists can be given as ranges: [1 . . 243], [’m’ . . ’x’]
I This works only for ordered types!
I What do you think [0 . . ] will produce?

I Use Ctrl-C to stop
I Try take 5 [0 . .]
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Functional Programming with Haskell

List comprehension

I General form: [x | x <- A, P x]

[n | n <- [0..10], odd n]
[odd n | n <- [0..10] ]
[x ++ y | x <- ["use", "faith"], y <- ["ful", "less"] ]
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Functional Programming with Haskell

List processing

I Function map takes a function and a list and returns a list containing the
results of applying the function to the individual list members

I What will map (+1) [0..9] do? And map hword ["fish", "and",
"chips"]?

I The filter function takes a property and a list, and returns the sublist
of all list elements satisfying the property.

I Guarded equations:

foo t | condition_1 = body_1
| condition_2 = body_2
| condition_3 = body_3
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Functional Programming with Haskell

Composition

(.) :: (b -> c) -> (a -> b) -> a -> c
(f . g) x = f (g x)

I If we have a Dutch-to-English and an English-to-French dictionaries and
we want a Dutch-to-French dictionary, what do we do?
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Functional Programming with Haskell

Quantification

and :: [Bool] -> Bool
and [] = True
and (x :xs) = x \&\& (and xs)

or :: [Bool] -> Bool
or [] = False
or (x :xs) = x || (or xs)

any, all :: (a -> Bool) -> [a] -> Bool
any p = or . map p
all p = and . map p
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Functional Programming with Haskell

Type classes

I Check the type of (1)
(1) (\ x y -> x /= y)

I Is there a difference between (1) and (/=)?
I Check the type of the function composition all . (/=). How could

you name it?
I Check the type of the function composition any . (==). How could

you name it?
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Functional Programming with Haskell

Recursion: exercise

I Exercise 3.1 Write a function that will test two infinite strings for being
equal.

I Exercise 3.2 The predefined function min computes the minimum of two
objects if they can be ordered. Use it to define a function minList::
Ord a => [a] -> a for computing the minimum of a non-empty list.

I Exercise 3.3 Define a function delete that removes an occurrence of
an object x from a list of objects in class Eq. Delete only the first
occurrence, if x is not in the list, do nothing.

I Exercise 3.4 Define a function srt :: Ord a => [a] -> [a] that
puts the minimum of the list in front of the result of sorting the list that
results from removing its minimum. Empty list is already sorted.
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Functional Programming with Haskell
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