
Computational Semantics with Haskell

Yulia Zinova

Winter 2016/2017

We follow Van Eijck and Unger 2010, electronic access from the library

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 1

/ 23

Functional Programming with Haskell

The programming language Haskell

I Member of Lisp family together with Scheme, ML, Occam, Clean, Erlang
I Based on lambda calculus (the whole family)
I Functions are everything in Haskell: they can be arguments and results of

other functions
I Functions can be recursive
I Arguments are evaluated only when needed (if at all) – lazy evaluation

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 2

/ 23

Functional Programming with Haskell

What we need

I An interpreter or compiler
I An interpreter is a system that allows you to execute function definitions

interactively
I On computers here: use Windows 10
I On your laptop: go to www.haskell.org/downloads and get either the

minimum package or the whole platform
I Follow the link to the GHCi (Glasgow Haskell Compiler) manual
I Task: find the command that one calls the compiler with.

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 3

/ 23

www.haskell.org/downloads

Functional Programming with Haskell

First Experiments

I The prompt Prelude means that only the predefined functions from the
Haskell Prelude are available

I Here is the Haskell wiki: https://wiki.haskell.org/Haskell
I First commands:

I :l〈file name〉 – load a file or module
I :r – to reload the currently loaded file
I :t〈expression〉 – display the type of an expression
I :q quit the compiler

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 4

/ 23

https://wiki.haskell.org/Haskell

Functional Programming with Haskell

First experiments

I Interpreter as a calculator: let us calculate the number of seconds in a
year

I Try several calculations, find out the precedence order of the operations
+, −, ∗, ,̂ /

I How does the interpreter read 2̂3̂4?

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 5

/ 23

Functional Programming with Haskell

Define your own function

I Define and use functions:

let square x = x * x in square 3

I Or use lambda abstraction:

(\ x -> x * x) 4

I Or define the function in a text file:

square :: Int -> Int
square x = x * x

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 6

/ 23

Functional Programming with Haskell

Load the code

I Download http://www.computational-semantics.eu/FPH.hs
I Load it: :l FPH
I Play with the function square

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 7

/ 23

http://www.computational-semantics.eu/FPH.hs

Functional Programming with Haskell

Basic types

I Characters – Char, single quotes
I String – String (equivalent to [Char]), double quotes
I List of integers – [Int]
I Empty string = empty list
I Boolean – Bool

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 8

/ 23

Functional Programming with Haskell

Putting items in the list

"Hello World!"
[’H’, ’e’, ’l’, ’l’, ’o’, ’ ’, ’W’, ’o’, ’r’, ’l’, ’d’, ’!’]
’H’:’e’:’l’:’l’:’o’:’ ’:’W’:’o’:’r’:’l’:’d’:’!’: []

What happens? What is the type of the colon operator ‘:’?

Char -> [Char] -> [Char]

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 9

/ 23

Functional Programming with Haskell

Putting items in the list

"Hello World!"
[’H’, ’e’, ’l’, ’l’, ’o’, ’ ’, ’W’, ’o’, ’r’, ’l’, ’d’, ’!’]
’H’:’e’:’l’:’l’:’o’:’ ’:’W’:’o’:’r’:’l’:’d’:’!’: []

What happens? What is the type of the colon operator ‘:’?
Char -> [Char] -> [Char]

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 9

/ 23

Functional Programming with Haskell

Recursion

I Look at the hword function

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 10

/ 23

Functional Programming with Haskell

Boolean operations

I Conjunction is & &
I Disjunction is | |
I Negation is not
I Which types do they have?
I For a prefix version of a two-place function, use brackets

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 11

/ 23

Functional Programming with Haskell

Infix operators

I bright & & beautiful = (& &) bright beautiful
I x op y = (op) x y
I (op x) – the operation resulting from applying op to its right hand side

argument
I (x op) – the operation resulting from applying op to its left hand side

argument
I http://directpoll.com/r?

XDbzPBd3ixYqg8NGqyk61sB4bD4jMvNsRdQsGg7pFh

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 12

/ 23

http://directpoll.com/r?XDbzPBd3ixYqg8NGqyk61sB4bD4jMvNsRdQsGg7pFh
http://directpoll.com/r?XDbzPBd3ixYqg8NGqyk61sB4bD4jMvNsRdQsGg7pFh

Functional Programming with Haskell

Type polymorphism

id :: a -> a
id x = x

I Check the type of the concatenation function (++)

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 13

/ 23

Functional Programming with Haskell

Recursion

I What is recursion?

I A recursive function calls itself, but without infinite regress
I How do we make sure it tops?
I Base case that does not call the function
I Examine the function story. Try putStrLn (story 5). What about

putStrLn (story (-1))

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 14

/ 23

Functional Programming with Haskell

Recursion

I What is recursion?
I A recursive function calls itself, but without infinite regress
I How do we make sure it tops?

I Base case that does not call the function
I Examine the function story. Try putStrLn (story 5). What about

putStrLn (story (-1))

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 14

/ 23

Functional Programming with Haskell

Recursion

I What is recursion?
I A recursive function calls itself, but without infinite regress
I How do we make sure it tops?
I Base case that does not call the function
I Examine the function story. Try putStrLn (story 5). What about

putStrLn (story (-1))

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 14

/ 23

Functional Programming with Haskell

List types and list comprehension

I Have look at the type of the colon operation. What does it mean?

I We combine an element of some type with a list of elements of the same
type

head : : [a] -> a
head (x:_) = x

tail : : [a] -> [a]
tail (_:xs) = xs

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 15

/ 23

Functional Programming with Haskell

List types and list comprehension

I Have look at the type of the colon operation. What does it mean?
I We combine an element of some type with a list of elements of the same

type

head : : [a] -> a
head (x:_) = x

tail : : [a] -> [a]
tail (_:xs) = xs

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 15

/ 23

Functional Programming with Haskell

List patterns

I The underscore matches any object
I The list pattern [] matches empty list
I The list pattern [x] matches any singleton list
I The list pattern (x:xs) matches any non-empty list
I http://directpoll.com/r?

XDbzPBd3ixYqg81uUQf0SHnX2XEtW5X2bna2QqHzPr

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 16

/ 23

http://directpoll.com/r?XDbzPBd3ixYqg81uUQf0SHnX2XEtW5X2bna2QqHzPr
http://directpoll.com/r?XDbzPBd3ixYqg81uUQf0SHnX2XEtW5X2bna2QqHzPr

Functional Programming with Haskell

Lists

I Lists can be given as ranges: [1 . . 243], [’m’ . . ’x’]
I This works only for ordered types!
I What do you think [0 . .] will produce?

I Use Ctrl-C to stop
I Try take 5 [0 . .]

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 17

/ 23

Functional Programming with Haskell

Lists

I Lists can be given as ranges: [1 . . 243], [’m’ . . ’x’]
I This works only for ordered types!
I What do you think [0 . .] will produce?
I Use Ctrl-C to stop
I Try take 5 [0 . .]

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 17

/ 23

Functional Programming with Haskell

List comprehension

I General form: [x | x <- A, P x]

[n | n <- [0..10], odd n]
[odd n | n <- [0..10]]
[x ++ y | x <- ["use", "faith"], y <- ["ful", "less"]]

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 18

/ 23

Functional Programming with Haskell

List processing

I Function map takes a function and a list and returns a list containing the
results of applying the function to the individual list members

I What will map (+1) [0..9] do? And map hword ["fish", "and",
"chips"]?

I The filter function takes a property and a list, and returns the sublist
of all list elements satisfying the property.

I Guarded equations:

foo t | condition_1 = body_1
| condition_2 = body_2
| condition_3 = body_3

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 19

/ 23

Functional Programming with Haskell

Composition

(.) :: (b -> c) -> (a -> b) -> a -> c
(f . g) x = f (g x)

I If we have a Dutch-to-English and an English-to-French dictionaries and
we want a Dutch-to-French dictionary, what do we do?

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 20

/ 23

Functional Programming with Haskell

Quantification

and :: [Bool] -> Bool
and [] = True
and (x :xs) = x \&\& (and xs)

or :: [Bool] -> Bool
or [] = False
or (x :xs) = x || (or xs)

any, all :: (a -> Bool) -> [a] -> Bool
any p = or . map p
all p = and . map p

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 21

/ 23

Functional Programming with Haskell

Type classes

I Check the type of (1)
(1) (\ x y -> x /= y)

I Is there a difference between (1) and (/=)?
I Check the type of the function composition all . (/=). How could

you name it?
I Check the type of the function composition any . (==). How could

you name it?

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 22

/ 23

Functional Programming with Haskell

Recursion: exercise

I Exercise 3.1 Write a function that will test two infinite strings for being
equal.

I Exercise 3.2 The predefined function min computes the minimum of two
objects if they can be ordered. Use it to define a function minList::
Ord a => [a] -> a for computing the minimum of a non-empty list.

I Exercise 3.3 Define a function delete that removes an occurrence of
an object x from a list of objects in class Eq. Delete only the first
occurrence, if x is not in the list, do nothing.

I Exercise 3.4 Define a function srt :: Ord a => [a] -> [a] that
puts the minimum of the list in front of the result of sorting the list that
results from removing its minimum. Empty list is already sorted.

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 23

/ 23

Functional Programming with Haskell

References:
Van Eijck, J. and Unger, C. (2010). Computational semantics with

functional programming . Cambridge University Press.

Yulia Zinova Computational Semantics with Haskell
Winter 2016/2017 We follow Van Eijck and Unger 2010, electronic access from the library 23

/ 23

	Functional Programming with Haskell

