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Finite state approach

I Finite state approach to morphology is by far the most popular one;

I References: Johnson (1972); Kaplan and Kay (1994); Karttunen
(2003)

I Two-level morphology: Koskenniemi (1984)
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What is a language?

I A language is a set of expressions that are built from a set of
symbols from an alphabet.

I An alphabet is a set of letters (or other symbols from a writing
system), phones, or words.

I Regular language is a language that can be constructed out of a
finite alphabet (denoted Σ) using ore or more of the following
operations:

I set union ∪
{a, b, c} ∪ {c , d} = {a, b, c , d}

I concatenation ·
abc· cd = abccd

I transitive closure *
a* denotes the set of sequences consisting of 0 or more a’s
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Regular language

I Any finite set of strings from a finite alphabet is a regular language.

I Regular languages can be used to describe a large number of
phenomena in natural language.

I There are morphological constructions that cannot be described by
regular languages: phrasal reduplication in Bambara, a language of
West Africa (Culy, 1985).
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Bambara example

(1) a. wulu
dog

o
marker

wulu
dog

‘whichever dog’
b. wulunuinina

dog searcher
o
marker

wulunuinina
dog searcher

‘whichever dog searcher’
c. manolunyininafilèla

rice searcher watcher
o
marker

manolunyininafilèla
rice searcher watcher
‘whichever rice searcher watcher’
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Bambara example

I Phrasal reduplication: X-o-X pattern.

I Why is this a problem for a regular language?

I Because the nominal phrase is in principle unbounded, so the
construction involves unbounded copying.

I Unbounded copying can be described neither by regular nor by
contex-free languages.
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Regular languages

I Σ* – universal language; consists of all strings that can be
constructed out of the alphabet Σ;

I ε – the empty string; Σ* contains ε;

I ∅ – consists of no strings;

I Question:
Does ∅ include ε?

I Answer:
No: ε is a string and ∅ contains no strings.
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Regular languages: more operations

I Regular languages are also closed under the following operations:
I intersection ∩
{a, b, c} ∩ {c , d} = {c}

I difference −
{a, b, c} − {c , d} = {a, b}

I complementation X
A = Σ∗ − A

I string reversal XR

(abc)R = cba
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Regular languages: regular expressions

I Regular languages are commonly denoted via regular expressions.
I Regular expressions involve a set of reserved symbols as notation:

I *: zero or more;
I ?: zero or one;
I +: one or more;
I | or ∪: disjunction
I ¬: negation

I Question:
Which language is denoted by

I (abc)?

Answer: {ε, abc}
I (a|b) Answer: {a, b}
I (¬a)∗ Answer: the set of strings with zero or more occurences

of anything rather than a
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Exercise

I Find regular expressions over {0, 1} that determine the following
languages:

1. all strings that contain an even number of 1’s;
2. all strings that contain an odd number of 0’s.
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Finite state automaton

I Finite-state automata are computational devices that compute
regular languages.

I A finite-state automaton is a quintuple M = (Q, s,F ,Σ, δ) where:

1. Q is a finite set of states;
2. s is a designated initial state;
3. F is a designated set of final states;
4. Σ is an alphabet of symbols;
5. δ is a transition relation from Q × (Σ ∪ ε) to Q (from

state/symbol pairs to states).

I A× B denotes the cross-product of sets A and B
{a, b} × {c , d} = {< a, c >,< b, c >,< a, d >,< b, d >}
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FSA: Kleene’s theorem

I Kleene’s theorem states that every regular language can be
recognized by a finite-state automaton.

I Similarly, every finite state automaton recognizes a regular
language.
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FSA: simple example

I Task: draw an automaton that accepts the language ab∗cd+e

s 1 2 3 4a c

b

d

d

e
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Regular relations

I Regular relations express relations between sets of strings.
I A regular n-relation is defined as follows:

1. ∅ is a regular n-relation;
2. For all symbols a ∈ [(Σ ∪ ε)× . . .× (Σ ∪ ε)], {a} is a regular

n-relation;
3. If R1, R2, and R are regular n-relations, then so are

3.1 R1 · R2, the n-way concatenation of R1 and R2: for every
r1 ∈ R1andr2 ∈ R2, r1r2 ∈ R1 · R2

3.2 R1 ∪ R2

3.3 R∗, the n-way transitive (Kleene) closure of R.

I For most applications in speech and language processing n = 2.
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Finite state transducer

I A 2-way finite-state transducer is a quintuple
M = (Q, s,F ,Σ× Σ, δ) where:

1. Q is a finite set of states;
2. s is a designated initial state;
3. F is a designated set of final states;
4. Σ is an alphabet of symbols;
5. δ is a transition relation from Q × (Σ ∪ ε× Σ ∪ ε) to Q.
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FST example

I With a transducer, a string matches against the input symbols on
the arcs, while at the same time the machine is outputting the
corresponding output symbols.

I Task: draw a FST that computes the relation
(a : a)(b : b)∗(c : g)(d : f )+

s 1 2 3a : a c : g

b : b

d : f

d : f

I Question: What will it produce for the string abbcddd?
Answer: abbgfff .
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Closure properties of regular languages and relations

Property Languages Relations
concatenation yes yes
Kleene closure yes yes
union yes yes
intersection yes no
difference yes no
composition – yes
inversion – yes

I Composition: if f and g are two regular relations and x a string,
then [f ◦ g ](x) = f (g(x))

I Inversion: swapping the input and the output symbols on the arcs
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