Computational Morphology: Finate State Methods

Yulia Zinova

15-19 February 2016

Finite state approach

- Finite state approach to morphology is by far the most popular one;
- References: Johnson (1972); Kaplan and Kay (1994); Karttunen (2003)
- Two-level morphology: Koskenniemi (1984)

What is a language?

- A language is a set of expressions that are built from a set of symbols from an alphabet.
- An alphabet is a set of letters (or other symbols from a writing system), phones, or words.
- Regular language is a language that can be constructed out of a finite alphabet (denoted Σ) using ore or more of the following operations:
- set union \cup

$$
\{a, b, c\} \cup\{c, d\}=\{a, b, c, d\}
$$

- concatenation .
$a b c \cdot c d=a b c c d$
- transitive closure *
a* denotes the set of sequences consisting of 0 or more a's

Regular language

- Any finite set of strings from a finite alphabet is a regular language.
- Regular languages can be used to describe a large number of phenomena in natural language.
- There are morphological constructions that cannot be described by regular languages: phrasal reduplication in Bambara, a language of West Africa (Culy, 1985).

Bambara example

(1) a. wulu o wulu
dog MARKER dog
'whichever dog'
b. wulunuinina o wulunuinina
dog searcher MARKER dog searcher
'whichever dog searcher'
c. manolunyininafilèla o
rice searcher watcher MARKER
manolunyininafilèla
rice searcher watcher
'whichever rice searcher watcher'

Bambara example

- Phrasal reduplication: X-o-X pattern.
- Why is this a problem for a regular language?

Bambara example

- Phrasal reduplication: X-o-X pattern.
- Why is this a problem for a regular language?
- Because the nominal phrase is in principle unbounded, so the construction involves unbounded copying.
- Unbounded copying can be described neither by regular nor by contex-free languages.

Regular languages

- Σ^{*} - universal language; consists of all strings that can be constructed out of the alphabet Σ;
- ϵ - the empty string; Σ^{*} contains ϵ;
- \emptyset - consists of no strings;
- Question:

Does \emptyset include ϵ ?

Regular languages

- Σ^{*} - universal language; consists of all strings that can be constructed out of the alphabet Σ;
- ϵ - the empty string; Σ^{*} contains ϵ;
- \emptyset - consists of no strings;
- Question:

Does \emptyset include ϵ ?

- Answer:

No: ϵ is a string and \emptyset contains no strings.

Regular languages: more operations

- Regular languages are also closed under the following operations:
- intersection \cap
$\{a, b, c\} \cap\{c, d\}=\{c\}$
- difference -
$\{a, b, c\}-\{c, d\}=\{a, b\}$
- complementation \bar{X}
$\bar{A}=\Sigma^{*}-A$
- string reversal X^{R}
$(a b c)^{R}=c b a$

Regular languages: regular expressions

- Regular languages are commonly denoted via regular expressions.
- Regular expressions involve a set of reserved symbols as notation:
- *: zero or more;
- ?: zero or one;
- +: one or more;
- | or \cup : disjunction
- $ᄀ$: negation
- Question:

Which language is denoted by

- $(a b c)$?

Regular languages: regular expressions

- Regular languages are commonly denoted via regular expressions.
- Regular expressions involve a set of reserved symbols as notation:
- *: zero or more;
- ?: zero or one;
- +: one or more;
- | or \cup : disjunction
- $ᄀ$: negation
- Question:

Which language is denoted by

- (abc)? Answer: $\{\epsilon, a b c\}$

Regular languages: regular expressions

- Regular languages are commonly denoted via regular expressions.
- Regular expressions involve a set of reserved symbols as notation:
- *: zero or more;
- ?: zero or one;
- +: one or more;
- | or \cup : disjunction
- $ᄀ$: negation
- Question:

Which language is denoted by

- (abc)? Answer: $\{\epsilon, a b c\}$
- (a|b)

Regular languages: regular expressions

- Regular languages are commonly denoted via regular expressions.
- Regular expressions involve a set of reserved symbols as notation:
- *: zero or more;
- ?: zero or one;
- +: one or more;
- | or \cup : disjunction
- $ᄀ$: negation
- Question:

Which language is denoted by

- (abc)? Answer: $\{\epsilon, a b c\}$
- (a|b) Answer: $\{a, b\}$

Regular languages: regular expressions

- Regular languages are commonly denoted via regular expressions.
- Regular expressions involve a set of reserved symbols as notation:
- *: zero or more;
- ?: zero or one;
- +: one or more;
- | or \cup : disjunction
- \neg : negation
- Question:

Which language is denoted by

- (abc)? Answer: $\{\epsilon, a b c\}$
- (a|b) Answer: $\{a, b\}$
- $(\neg a)^{*}$

Regular languages: regular expressions

- Regular languages are commonly denoted via regular expressions.
- Regular expressions involve a set of reserved symbols as notation:
- *: zero or more;
- ?: zero or one;
- +: one or more;
- | or \cup : disjunction
- \neg : negation
- Question:

Which language is denoted by

- (abc)? Answer: $\{\epsilon, a b c\}$
- (a|b) Answer: $\{a, b\}$
- $(\neg a)^{*}$ Answer: the set of strings with zero or more occurences of anything rather than a

Exercise

- Find regular expressions over $\{0,1\}$ that determine the following languages:

1. all strings that contain an even number of 1 's;
2. all strings that contain an odd number of 0 's.

Finite state automaton

- Finite-state automata are computational devices that compute regular languages.
- A finite-state automaton is a quintuple $M=(Q, s, F, \Sigma, \delta)$ where:

1. Q is a finite set of states;
2. s is a designated initial state;
3. F is a designated set of final states;
4. Σ is an alphabet of symbols;
5. δ is a transition relation from $Q \times(\Sigma \cup \epsilon)$ to Q (from state/symbol pairs to states).

- $A \times B$ denotes the cross-product of sets A and B $\{a, b\} \times\{c, d\}=\{<a, c\rangle,\langle b, c\rangle,\langle a, d\rangle,\langle b, d\rangle\}$

FSA: Kleene's theorem

- Kleene's theorem states that every regular language can be recognized by a finite-state automaton.
- Similarly, every finite state automaton recognizes a regular language.

FSA: simple example

- Task: draw an automaton that accepts the language $a b^{*} c d^{+} e$

FSA: simple example

- Task: draw an automaton that accepts the language $a b^{*} c d^{+} e$ b

Regular relations

- Regular relations express relations between sets of strings.
- A regular n-relation is defined as follows:

1. \emptyset is a regular n-relation;
2. For all symbols $a \in[(\Sigma \cup \epsilon) \times \ldots \times(\Sigma \cup \epsilon)],\{a\}$ is a regular n-relation;
3. If R_{1}, R_{2}, and R are regular n-relations, then so are
$3.1 R_{1} \cdot R_{2}$, the n-way concatenation of R_{1} and R_{2} : for every $r_{1} \in R_{1} a n d r_{2} \in R_{2}, r_{1} r_{2} \in R_{1} \cdot R_{2}$
$3.2 R_{1} \cup R_{2}$
$3.3 R^{*}$, the n-way transitive (Kleene) closure of R .

- For most applications in speech and language processing $n=2$.

Finite state transducer

- A 2-way finite-state transducer is a quintuple $M=(Q, s, F, \Sigma \times \Sigma, \delta)$ where:

1. Q is a finite set of states;
2. s is a designated initial state;
3. F is a designated set of final states;
4. Σ is an alphabet of symbols;
5. δ is a transition relation from $Q \times(\Sigma \cup \epsilon \times \Sigma \cup \epsilon)$ to Q.

FST example

- With a transducer, a string matches against the input symbols on the arcs, while at the same time the machine is outputting the corresponding output symbols.
- Task: draw a FST that computes the relation $(a: a)(b: b)^{*}(c: g)(d: f)^{+}$

FST example

- With a transducer, a string matches against the input symbols on the arcs, while at the same time the machine is outputting the corresponding output symbols.
- Task: draw a FST that computes the relation $(a: a)(b: b)^{*}(c: g)(d: f)^{+}$

$$
b: b
$$

- Question: What will it produce for the string abbcddd?

FST example

- With a transducer, a string matches against the input symbols on the arcs, while at the same time the machine is outputting the corresponding output symbols.
- Task: draw a FST that computes the relation $(a: a)(b: b)^{*}(c: g)(d: f)^{+}$

$$
b: b
$$

- Question: What will it produce for the string abbcddd? Answer: abbgfff.

Closure properties of regular languages and relations

Property	Languages	Relations
concatenation	yes	yes
Kleene closure	yes	yes
union	yes	yes
intersection	yes	no
difference	yes	no
composition	-	yes
inversion	-	yes

- Composition: if f and g are two regular relations and x a string, then $[f \circ g](x)=f(g(x))$
- Inversion: swapping the input and the output symbols on the arcs

Culy, C. (1985). The complexity of the vocabulary of bambara. Linguistics and Philosophy, pages 345-351.
Johnson, C. D. (1972). Formal aspects of phonological description. Mouton The Hague.
Kaplan, R. M. and Kay, M. (1994). Regular models of phonological rule systems. Computational linguistics, 20(3), 331-378.
Karttunen, L. (2003). Finite-state morphology.
Koskenniemi, K. (1984). A general computational model for word-form recognition and production. In Proceedings of the 10th International Conference on Computational Linguistics and 22nd annual meeting on Association for Computational Linguistics, pages 178-181. Association for Computational Linguistics.

