
Regular languages and Finite state automata
Regular relations and Finite state transducers

Computational Morphology:
Finate State Methods

Yulia Zinova

15 – 19 February 2016

Yulia Zinova Computational Morphology: Finate State Methods



Regular languages and Finite state automata
Regular relations and Finite state transducers

Finite state approach

I Finite state approach to morphology is by far the most popular one;

I References: Johnson (1972); Kaplan and Kay (1994); Karttunen
(2003)

I Two-level morphology: Koskenniemi (1984)

Yulia Zinova Computational Morphology: Finate State Methods



Regular languages and Finite state automata
Regular relations and Finite state transducers

What is a language?

I A language is a set of expressions that are built from a set of
symbols from an alphabet.

I An alphabet is a set of letters (or other symbols from a writing
system), phones, or words.

I Regular language is a language that can be constructed out of a
finite alphabet (denoted Σ) using ore or more of the following
operations:

I set union ∪
{a, b, c} ∪ {c , d} = {a, b, c , d}

I concatenation ·
abc· cd = abccd

I transitive closure *
a* denotes the set of sequences consisting of 0 or more a’s

Yulia Zinova Computational Morphology: Finate State Methods



Regular languages and Finite state automata
Regular relations and Finite state transducers

Regular language

I Any finite set of strings from a finite alphabet is a regular language.

I Regular languages can be used to describe a large number of
phenomena in natural language.

I There are morphological constructions that cannot be described by
regular languages: phrasal reduplication in Bambara, a language of
West Africa (Culy, 1985).

Yulia Zinova Computational Morphology: Finate State Methods



Regular languages and Finite state automata
Regular relations and Finite state transducers

Bambara example

(1) a. wulu
dog

o
marker

wulu
dog

‘whichever dog’
b. wulunuinina

dog searcher
o
marker

wulunuinina
dog searcher

‘whichever dog searcher’
c. manolunyininafilèla

rice searcher watcher
o
marker

manolunyininafilèla
rice searcher watcher
‘whichever rice searcher watcher’

Yulia Zinova Computational Morphology: Finate State Methods



Regular languages and Finite state automata
Regular relations and Finite state transducers

Bambara example

I Phrasal reduplication: X-o-X pattern.

I Why is this a problem for a regular language?

I Because the nominal phrase is in principle unbounded, so the
construction involves unbounded copying.

I Unbounded copying can be described neither by regular nor by
contex-free languages.

Yulia Zinova Computational Morphology: Finate State Methods



Regular languages and Finite state automata
Regular relations and Finite state transducers

Bambara example

I Phrasal reduplication: X-o-X pattern.

I Why is this a problem for a regular language?

I Because the nominal phrase is in principle unbounded, so the
construction involves unbounded copying.

I Unbounded copying can be described neither by regular nor by
contex-free languages.

Yulia Zinova Computational Morphology: Finate State Methods



Regular languages and Finite state automata
Regular relations and Finite state transducers

Regular languages

I Σ* – universal language; consists of all strings that can be
constructed out of the alphabet Σ;

I ε – the empty string; Σ* contains ε;

I ∅ – consists of no strings;

I Question:
Does ∅ include ε?

I Answer:
No: ε is a string and ∅ contains no strings.

Yulia Zinova Computational Morphology: Finate State Methods



Regular languages and Finite state automata
Regular relations and Finite state transducers

Regular languages

I Σ* – universal language; consists of all strings that can be
constructed out of the alphabet Σ;

I ε – the empty string; Σ* contains ε;

I ∅ – consists of no strings;

I Question:
Does ∅ include ε?

I Answer:
No: ε is a string and ∅ contains no strings.

Yulia Zinova Computational Morphology: Finate State Methods



Regular languages and Finite state automata
Regular relations and Finite state transducers

Regular languages: more operations

I Regular languages are also closed under the following operations:
I intersection ∩
{a, b, c} ∩ {c , d} = {c}

I difference −
{a, b, c} − {c , d} = {a, b}

I complementation X
A = Σ∗ − A

I string reversal XR

(abc)R = cba

Yulia Zinova Computational Morphology: Finate State Methods



Regular languages and Finite state automata
Regular relations and Finite state transducers

Regular languages: regular expressions

I Regular languages are commonly denoted via regular expressions.
I Regular expressions involve a set of reserved symbols as notation:

I *: zero or more;
I ?: zero or one;
I +: one or more;
I | or ∪: disjunction
I ¬: negation

I Question:
Which language is denoted by

I (abc)?

Answer: {ε, abc}
I (a|b) Answer: {a, b}
I (¬a)∗ Answer: the set of strings with zero or more occurences

of anything rather than a

Yulia Zinova Computational Morphology: Finate State Methods



Regular languages and Finite state automata
Regular relations and Finite state transducers

Regular languages: regular expressions

I Regular languages are commonly denoted via regular expressions.
I Regular expressions involve a set of reserved symbols as notation:

I *: zero or more;
I ?: zero or one;
I +: one or more;
I | or ∪: disjunction
I ¬: negation

I Question:
Which language is denoted by

I (abc)? Answer: {ε, abc}

I (a|b) Answer: {a, b}
I (¬a)∗ Answer: the set of strings with zero or more occurences

of anything rather than a

Yulia Zinova Computational Morphology: Finate State Methods



Regular languages and Finite state automata
Regular relations and Finite state transducers

Regular languages: regular expressions

I Regular languages are commonly denoted via regular expressions.
I Regular expressions involve a set of reserved symbols as notation:

I *: zero or more;
I ?: zero or one;
I +: one or more;
I | or ∪: disjunction
I ¬: negation

I Question:
Which language is denoted by

I (abc)? Answer: {ε, abc}
I (a|b)

Answer: {a, b}
I (¬a)∗ Answer: the set of strings with zero or more occurences

of anything rather than a

Yulia Zinova Computational Morphology: Finate State Methods



Regular languages and Finite state automata
Regular relations and Finite state transducers

Regular languages: regular expressions

I Regular languages are commonly denoted via regular expressions.
I Regular expressions involve a set of reserved symbols as notation:

I *: zero or more;
I ?: zero or one;
I +: one or more;
I | or ∪: disjunction
I ¬: negation

I Question:
Which language is denoted by

I (abc)? Answer: {ε, abc}
I (a|b) Answer: {a, b}

I (¬a)∗ Answer: the set of strings with zero or more occurences
of anything rather than a

Yulia Zinova Computational Morphology: Finate State Methods



Regular languages and Finite state automata
Regular relations and Finite state transducers

Regular languages: regular expressions

I Regular languages are commonly denoted via regular expressions.
I Regular expressions involve a set of reserved symbols as notation:

I *: zero or more;
I ?: zero or one;
I +: one or more;
I | or ∪: disjunction
I ¬: negation

I Question:
Which language is denoted by

I (abc)? Answer: {ε, abc}
I (a|b) Answer: {a, b}
I (¬a)∗

Answer: the set of strings with zero or more occurences
of anything rather than a

Yulia Zinova Computational Morphology: Finate State Methods



Regular languages and Finite state automata
Regular relations and Finite state transducers

Regular languages: regular expressions

I Regular languages are commonly denoted via regular expressions.
I Regular expressions involve a set of reserved symbols as notation:

I *: zero or more;
I ?: zero or one;
I +: one or more;
I | or ∪: disjunction
I ¬: negation

I Question:
Which language is denoted by

I (abc)? Answer: {ε, abc}
I (a|b) Answer: {a, b}
I (¬a)∗ Answer: the set of strings with zero or more occurences

of anything rather than a

Yulia Zinova Computational Morphology: Finate State Methods



Regular languages and Finite state automata
Regular relations and Finite state transducers

Exercise

I Find regular expressions over {0, 1} that determine the following
languages:

1. all strings that contain an even number of 1’s;
2. all strings that contain an odd number of 0’s.

Yulia Zinova Computational Morphology: Finate State Methods



Regular languages and Finite state automata
Regular relations and Finite state transducers

Finite state automaton

I Finite-state automata are computational devices that compute
regular languages.

I A finite-state automaton is a quintuple M = (Q, s,F ,Σ, δ) where:

1. Q is a finite set of states;
2. s is a designated initial state;
3. F is a designated set of final states;
4. Σ is an alphabet of symbols;
5. δ is a transition relation from Q × (Σ ∪ ε) to Q (from

state/symbol pairs to states).

I A× B denotes the cross-product of sets A and B
{a, b} × {c , d} = {< a, c >,< b, c >,< a, d >,< b, d >}

Yulia Zinova Computational Morphology: Finate State Methods



Regular languages and Finite state automata
Regular relations and Finite state transducers

FSA: Kleene’s theorem

I Kleene’s theorem states that every regular language can be
recognized by a finite-state automaton.

I Similarly, every finite state automaton recognizes a regular
language.

Yulia Zinova Computational Morphology: Finate State Methods



Regular languages and Finite state automata
Regular relations and Finite state transducers

FSA: simple example

I Task: draw an automaton that accepts the language ab∗cd+e

s 1 2 3 4a c

b

d

d

e

Yulia Zinova Computational Morphology: Finate State Methods



Regular languages and Finite state automata
Regular relations and Finite state transducers

FSA: simple example

I Task: draw an automaton that accepts the language ab∗cd+e

s 1 2 3 4a c

b

d

d

e

Yulia Zinova Computational Morphology: Finate State Methods



Regular languages and Finite state automata
Regular relations and Finite state transducers

Regular relations

I Regular relations express relations between sets of strings.
I A regular n-relation is defined as follows:

1. ∅ is a regular n-relation;
2. For all symbols a ∈ [(Σ ∪ ε)× . . .× (Σ ∪ ε)], {a} is a regular

n-relation;
3. If R1, R2, and R are regular n-relations, then so are

3.1 R1 · R2, the n-way concatenation of R1 and R2: for every
r1 ∈ R1andr2 ∈ R2, r1r2 ∈ R1 · R2

3.2 R1 ∪ R2

3.3 R∗, the n-way transitive (Kleene) closure of R.

I For most applications in speech and language processing n = 2.

Yulia Zinova Computational Morphology: Finate State Methods



Regular languages and Finite state automata
Regular relations and Finite state transducers

Finite state transducer

I A 2-way finite-state transducer is a quintuple
M = (Q, s,F ,Σ× Σ, δ) where:

1. Q is a finite set of states;
2. s is a designated initial state;
3. F is a designated set of final states;
4. Σ is an alphabet of symbols;
5. δ is a transition relation from Q × (Σ ∪ ε× Σ ∪ ε) to Q.

Yulia Zinova Computational Morphology: Finate State Methods



Regular languages and Finite state automata
Regular relations and Finite state transducers

FST example

I With a transducer, a string matches against the input symbols on
the arcs, while at the same time the machine is outputting the
corresponding output symbols.

I Task: draw a FST that computes the relation
(a : a)(b : b)∗(c : g)(d : f )+

s 1 2 3a : a c : g

b : b

d : f

d : f

I Question: What will it produce for the string abbcddd?
Answer: abbgfff .

Yulia Zinova Computational Morphology: Finate State Methods



Regular languages and Finite state automata
Regular relations and Finite state transducers

FST example

I With a transducer, a string matches against the input symbols on
the arcs, while at the same time the machine is outputting the
corresponding output symbols.

I Task: draw a FST that computes the relation
(a : a)(b : b)∗(c : g)(d : f )+

s 1 2 3a : a c : g

b : b

d : f

d : f

I Question: What will it produce for the string abbcddd?

Answer: abbgfff .

Yulia Zinova Computational Morphology: Finate State Methods



Regular languages and Finite state automata
Regular relations and Finite state transducers

FST example

I With a transducer, a string matches against the input symbols on
the arcs, while at the same time the machine is outputting the
corresponding output symbols.

I Task: draw a FST that computes the relation
(a : a)(b : b)∗(c : g)(d : f )+

s 1 2 3a : a c : g

b : b

d : f

d : f

I Question: What will it produce for the string abbcddd?
Answer: abbgfff .

Yulia Zinova Computational Morphology: Finate State Methods



Regular languages and Finite state automata
Regular relations and Finite state transducers

Closure properties of regular languages and relations

Property Languages Relations
concatenation yes yes
Kleene closure yes yes
union yes yes
intersection yes no
difference yes no
composition – yes
inversion – yes

I Composition: if f and g are two regular relations and x a string,
then [f ◦ g ](x) = f (g(x))

I Inversion: swapping the input and the output symbols on the arcs

Yulia Zinova Computational Morphology: Finate State Methods



Regular languages and Finite state automata
Regular relations and Finite state transducers

Culy, C. (1985). The complexity of the vocabulary of bambara.
Linguistics and Philosophy , pages 345–351.

Johnson, C. D. (1972). Formal aspects of phonological description.
Mouton The Hague.

Kaplan, R. M. and Kay, M. (1994). Regular models of phonological
rule systems. Computational linguistics, 20(3), 331–378.

Karttunen, L. (2003). Finite-state morphology.

Koskenniemi, K. (1984). A general computational model for
word-form recognition and production. In Proceedings of the
10th International Conference on Computational Linguistics and
22nd annual meeting on Association for Computational
Linguistics, pages 178–181. Association for Computational
Linguistics.

Yulia Zinova Computational Morphology: Finate State Methods


	Regular languages and Finite state automata
	Regular relations and Finite state transducers

