Computational Morphology:
Regular expressions

Yulia Zinova

15 February 2016 — 19 February 2016

Yulia Zinova Computational Morphology: Regular expressions

Overview

Simple expressions

Examples

Complex Expressions

Acknowledgement: The material presented here relies heavily on
the material of Chapter 2 of Karttunen 2003

Yulia Zinova Computational Morphology: Regular expressions

Simple expressions

Atomic expressions: Symbols

» The epsilon symbol 0 denotes the empty-string language or the
corresponding identity relation.

» The any symbol 7 denotes the language of all single-symbol strings

» Any single symbol, a, denotes the language that consists of the
corresponding string, here “a,” or the identity relation on that
language.

» The boundary symbol .#. designates the beginning of the string in
the left context and the end of the string in the right context of a
restriction or a rule-like replace expression.

» The identity relation ? maps any symbol to itself.

» Multicharacter symbols such as PLURAL are also symbols, but they
happen to have multicharacter print names.

Yulia Zinova Computational Morphology: Regular expressions

Simple expressions

Atomic expressions: Pairs

» Any pair of symbols a:b separated by a colon denotes the relation
that consists of the corresponding ordered pair of strings, {<"a",
"b">}, where a is the upper symbol and b is the lower symbol of
the pair.

» The pair 7:7 denotes the relation that maps any symbol to any
symbol including itself. It is an equal-length relation, in case of
?:7 length=1.

Yulia Zinova Computational Morphology: Regular expressions

Simple expressions

Brackets

v

[Al = A

=0

[. .] has a special meaning in replace expressions and will be
discussed later

v

v

v

Bracketing is optional if there i no ambiguity.
(A)=[A]0]

v

Yulia Zinova Computational Morphology: Regular expressions

Simple expressions

Iteration

v

A+ denotes the concatenation of A with itself one or more times,
the + operator is called Kleene-plus or sigma-plus.

v

A* denotes the union of A+ with the empty string language, the
* operator is called Kleene-star or sigma-star.

» 7% denotes universal language

v

[? :7] denotes the universal equal-length relation

Yulia Zinova Computational Morphology: Regular expressions

Simple expressions

Complementation

» ~A denotes the complement of the language A.

» The complementation operator ~ is also called negation.

> ~A =70 = A

» \A denotes the term complement language (the set of all
single-symbol strings that are not in A.

» the \ operator is also called term negation.

» \A=1[7 — A

> Note: A must denote a language, the complementation operation
in not defined for relations.

Yulia Zinova Computational Morphology: Regular expressions

Simple expressions

Concatenation

» Where A and B are arbitrary regular expressions, [A B] is the
concatenation of A and B. The white space serves as a
concatemation operator.

» Concatenation is associative, which means that
[[A B] C]=[A [B C]], so inner brackets can be omitted.

» [abcd = {abcd}

» A”n denotes the n-ary concatenation of A with itself:
AN3 = [aaa)

» A" < n denotes less then n concatenations of A, including the
empty string.

» A" > n denotes more then n concatenations of A.

» A™, k} denotes from i to k concatenations of A.

Yulia Zinova Computational Morphology: Regular expressions

Simple expressions

Containment and ignoring

» SA =[7 A7
» [A / B] denotes the language or relation obtained from A by
splicing in B* everywhere withing the strings of A.

» For example, [[a b] / x| denotes the set of strings like

“xxaxxxbxxx" that distort “ab” by arbitrary insertions of “x".

» [A./. B] denotes the language or relation obtained from A by
splicing in B* everywhere in the inside of the elements of A but
not at the edges.

» For example, [[a b] ./. x] contains strings like “axxxb” but not
“xab” or "axxbxx".

Yulia Zinova Computational Morphology: Regular expressions

Simple expressions

Union and Intersection

» Where A and B are arbitrary regular expressions, [A|B] is the union
of A and B which denotes the union of the languages denoted by A
and B respectively.

» The union operator is also called disjunction.

» Write down the strings in the language
a| b| Charley

» Where A and B are arbitrary regular expressions (either languages
or equal-length relations), [A&B] is the intersection of A and B.

» The intersection operator is also called conjunction.

» Write down the strings in the language
[al blcld|el&[d]e]f]g]

Yulia Zinova Computational Morphology: Regular expressions

Simple expressions

Substraction

» [A — B] denotes the set difference of the languages denoted by A
and B (the set of all strings in A that are not in B).

» What is the language denoted by
[dog | cat | elephant] - [elephant | horse | cow]

Yulia Zinova Computational Morphology: Regular expressions

Simple expressions

Crossproduct

v

[A .x. B] denotes a relation that pairs every string of language A
with every string of language B.

v

A is called the upper language and B is called the lower language.

v

[?* .x. 7*] denotes the universal relation, the mapping from any
string to any string.
[[A] : [B]] denotes the same as [A .x. B].

[a .x. b] and a: b are equivalent expressions.

v

v

v

The operator : has very high precedence and .x. has very low
precedence (lower than concatenation).

[cat.x.chat] = [[cat] x.[chat]
[cat : chat] = [calt: c]hat]

v

v

Yulia Zinova Computational Morphology: Regular expressions

Simple expressions

Projection

» A.u denotes the upper language of the relation A.

» A.l denotes the lower language of the relation A.

Yulia Zinova Computational Morphology: Regular expressions

Simple expressions

Reverse and inverse

v

A.r denotes the reverse of the language or relation A.

v

if A contains <"abc", "xy">, A.r contains <"cba", "yx">

v

A.1i denotes the inverse of the relation A.

v

if A contains <"abc", "xy">, A.i contains <"abc", "xy">

Yulia Zinova Computational Morphology: Regular expressions

Simple expressions

Composition and substitution

v

v

[A .o. B] denotes the composition of the relation A with the
relation B.

if A contains the string pair < x, y >, and B contains < y, z >,
[A .o. B] contains the string pair < x, z >

“[[A], s, L] denotes the language or relation derived from A by
substituting every symbol x in the list L for every occurence of the
symbol s.

‘[[a -> bl, b, x y z] denotes the same relation as

[a >[Iyl z]

Yulia Zinova Computational Morphology: Regular expressions

Examples

Minimal languages

» Which languages or relations are encoded by the following
expressions?

>~ [7]

Yulia Zinova Computational Morphology: Regular expressions

Examples

Minimal languages

v

Which languages or relations are encoded by the following
expressions?
~[7]

v

v

{} The empty language that contains no strings
(1

v

Yulia Zinova Computational Morphology: Regular expressions

Examples

Minimal languages

v

Which languages or relations are encoded by the following
expressions?
~[7]

v

v

{} The empty language that contains no strings
(]
{""} The empty string language

v

v

> a

Yulia Zinova Computational Morphology: Regular expressions

Examples

Minimal languages

v

Which languages or relations are encoded by the following
expressions?

>~ [7]

v

{} The empty language that contains no strings
(]
{""} The empty string language

v

v

> a
{a)
> ()

v

Yulia Zinova Computational Morphology: Regular expressions

Examples

Minimal languages

v

Which languages or relations are encoded by the following
expressions?

-~ 7]

» {} The empty language that contains no strings
> []

» {""} The empty string language

> a

> {3}

> (a)

> ()

Yulia Zinova Computational Morphology: Regular expressions

Examples

lteration
» Which languages or relations are encoded by the following

expressions?

> [a7]

Yulia Zinova Computational Morphology: Regular expressions

Examples

Iteration

» Which languages or relations are encoded by the following
expressions?

> [a]
» {7, "ad”, ...}

> [a+]

Yulia Zinova Computational Morphology: Regular expressions

Examples

Iteration

» Which languages or relations are encoded by the following
expressions?

[a"]

» {7, "ad”, ...}
[a-+]

“a”, "aa", ...}
»a0b

v

v

v

Yulia Zinova Computational Morphology: Regular expressions

Examples

Iteration

» Which languages or relations are encoded by the following
expressions?

[a*]

> { “3", “aa”, }
[a+]

“a”, "aa", ...}
»a0b

{"ab"}

» a:0 b:a

v

v

v

v

Yulia Zinova Computational Morphology: Regular expressions

Examples

Iteration

» Which languages or relations are encoded by the following
expressions?

[a"]

» {7, "ad”, ...}
[a+]

“a”, "aa", ...}
»a0b

{"ab"}

» a:0 b:a
{<"ab","a" >}

» a b:0

v

v

v

v

v

Yulia Zinova Computational Morphology: Regular expressions

Examples

Iteration

» Which languages or relations are encoded by the following
expressions?

[a"]

» {7, "ad”, ...}
[a+]

“a”, "aa", ...}
»aOlOb

{"ab"}

» a:0 b:a
{<"ab","a" >}

> a b:0

{<"ab","a" >} (same relation, different network!)

v

v

v

v

v

v

Yulia Zinova Computational Morphology: Regular expressions

Simple expressions
Examples
Complex Expressions

Crossproduct

» a .X. b

Yulia Zinova Computational Morphology: Regular expressions

Simple expressions
Examples
Complex Expressions

Crossproduct

» a .X. b
> {< “a” , Hb” >}

» [a b] .x. c

Yulia Zinova Computational Morphology: Regular expressions

Examples

Crossproduct

» a .Xx. b

w_1n o upn

» {<"a","b" >}

» [a b] .x. c

» {<"ab","c">}

» When the pairs of strings are of different length, there are different
ways to encode this. Draw three different networks for the last
relation.

» The Xerox compiler pairs the strings from left to right, symbol-by
symbol, so epsilon symbols are only introduced at the right end if
needed (this is an arbitrary choice).

Yulia Zinova Computational Morphology: Regular expressions

Simple expressions
Examples
Complex Expressions

Composition

» a:b .o. b:c

Yulia Zinova Computational Morphology: Regular expressions

Simple expressions
Examples
Complex Expressions

Composition

» a:b .o. b:c
» {<"a", ">}

» a:b .o0. b .0. b:c

Yulia Zinova

Computational Morphology: Regular expressions

Simple expressions
Examples
Complex Expressions

Composition

» a:b .o0. b:c
{<"a","c">}
a:b .o. b .0. b:c

» {<"a", ">}

v

v

Yulia Zinova Computational Morphology: Regular expressions

Examples

Closure

» Regular expressions were invented as a meta-language to describe
languages, but then their usage extended to relations.

» A set operation has a corresponding relation on finite-state
networks only if the set of regular relations and languages is closed
under that operation.

» Closure means that if the sets to which the operation is applied are
regular, the result is also regular, that is, encodable as a
finite-state network.

» The table shows the closure properties of various operations.

Yulia Zinova Computational Morphology: Regular expressions

Examples

Closure properties

Operation Regular Languages | Regular Relations
union yes yes
concatenation yes yes
iteration yes yes
reversal yes yes
intersection yes no
substraction yes no
complementation yes no
composition not applicable yes
inversion not applicable yes

Yulia Zinova Computational Morphology: Regular expressions

Examples

Precedence
Type Operators
Unary operations \, *
Crossproduct :
Prefix ~\, 9
Suffix +,0* ", o,
Ignoring /
Concatenation (whitespace)
Boolean |, &, -
Restriction and replacement =>, ->
Crossproduct and composition X., .0.

Yulia Zinova

Computational Morphology: Regular expressions

Examples

Special symbols

» To avoid the special interpretation of a symbol, one has to prefix it
with % or enclose in double quotes.

» “\n" is the newline symbol
» “\t" is the tab symbol

» Multicharacter symbols are allowed. E.g., “[Noun]" or %[Noun%]
denote [Noun]

» In order to not confuse the multicharacter symbols with the
concatenated symbols, it is common to surround or precede the
multicharacter symbols with special characters.

Yulia Zinova Computational Morphology: Regular expressions

Complex Expressions

Restriction

» The restriction operator is one of the two fundamental operators in
the traditional two-level calculus.

» [A => L _ R] denotes the language in which any string from A
that occurs as a substring is immediately preceded by some string
from L and immediately followed by some string from R.

» [A => L1 _ R1, L2 _ R2] denotes the language in which every
instance of A is surrounded either by strings from L1 and R1 or by
strings from L2 and R2.

» The list of contexts can be arbitrarily long.

» Restrictions: all the components must denote regular languages,
not relations.

Yulia Zinova Computational Morphology: Regular expressions

Complex Expressions

Replacement

» Replacement expresions describe strings of one language in terms
of how they differ from the strings of the other language.

» The family of replacement operations is specific to the Xerox
regular-expression calculus.

Yulia Zinova Computational Morphology: Regular expressions

Complex Expressions

Simple replacement

» [A -> B] denotes the relation in which every each string of the
upper language to a string that is identical to it except that all the
occurrences of A are replaced by the occurrences of a string from
B.

» [A <- B] denotes the inverse of [B —> A]

» [A (->) B] denotes an optional replacement (the union of [A
-> B] with the identity relation A).

» [[. A .] -> B] is equivalent to [A -> B] if the language
denoted by A does not contain the empty string.

» Restriction: A and B must be regular languages, not relations.

Yulia Zinova Computational Morphology: Regular expressions

Complex Expressions

Marking and parallel replacement

» [A -> B ... C] denotes a relation in which each string of the
upper-side universal language is paired with all strings that are
identical to the original except that every instance of A that occurs
as a substring is represented by a copy that has a string from B as
a prefix and a string from C as a suffix.

» [a]le|i]o]u->7%[..%]1 maps "abide" to
"[albl[ild[e]"

» [A -> B, C -> D] denotes the simultaneous replacement of A
by B and C by D. Any number of components is allowed.

Yulia Zinova Computational Morphology: Regular expressions

Complex Expressions

Conditional replacement (1)

» [A->B||L_R]
Every replaced substring in the upper language is immediately
preceded by an upper-side string from L and immediately followed
by an upper-side string from R.

> In other words, both left and right contexts are matched in the
upper-language string.
» This is the most used type of replacement.

» But sometimes other types are needed.

Yulia Zinova Computational Morphology: Regular expressions

Complex Expressions

Conditional replacement (2)

v

[A->B/ /L _R]

Every replaced substring in the upper language is immediately
followed by an upper-side string from R and the lower-side
replacement string is immediately preceded by a string from L.

(A->B\\L_RI

Every replaced substring in the upper language is immediately
preceded by an upper-side string from L and the lower-side
replacement string is immediately followed by a string from R.
[A->B\ /L _RI]

Every lower-side replacement string is immediately preceded by a
lower-side string from L and immediately followed by a lower-side
string from R.

A, B, R, and L are languages, not relations.

Yulia Zinova Computational Morphology: Regular expressions

Complex Expressions

Parallel conditional replacement

»[A->B||Ll_Rt,,C->D]||L2_R2]
replaces A by B in the context of L1 and R1 and simultaneously C
by D in the context of L2 and R2.

» Example of use: replace Roman numerals with Arabic (there is a
dependence on the position of symbol, e.g., 1 can be | or X).

Yulia Zinova Computational Morphology: Regular expressions

Complex Expressions

Directed replacement

>

v

[A @-> BI]

Replacement strings are selected from left to right, priority goes to
the longest.

[A ->@ B]

Replacement strings are selected from right to left, priority goes to
the longest.

(A > B]

Replacement strings are selected from left to right, priority goes to
the shortest.

[A >@ B]

Replacement strings are selected from right to left, priority goes to
the shortest.

A and B are languages, not relations.

Yulia Zinova Computational Morphology: Regular expressions

Complex Expressions

References:
Karttunen, L. (2003). Finite-state morphology.

Yulia Zinova Computational Morphology: Regular expressions

	Simple expressions
	Examples
	Complex Expressions

