
What is lexc?
Making lexical transducers

Computational Morphology:
Xerox finite state tool, lexc

Yulia Zinova

15 February 2016 – 19 February 2016

Yulia Zinova Computational Morphology: Xerox finite state tool, lexc



What is lexc?
Making lexical transducers

Overview

What is lexc?

Making lexical transducers

Yulia Zinova Computational Morphology: Xerox finite state tool, lexc



What is lexc?
Making lexical transducers

LEXC

I The Finite-State Lexicon Compiler (lexc) is an authoring tool for
creating lexicons and lexical transducers.

I lexc is designed to be used in conjunction with transducers
produced with the Xerox Two-level Rule Compiler (Karttunen,
2003).

I These slides are based on the Karttunen (2003) book and the
Karttunen (1993) technical report.

Yulia Zinova Computational Morphology: Xerox finite state tool, lexc



What is lexc?
Making lexical transducers

What is lexc?

I A lexical transducer is a specialized finite-state automaton that
maps lexical forms and morphological specifications to
corresponding inflected forms, and vice versa.

I The input to the lexicon compiler is a text file in a format similar
to lexicons accepted by Kimmo Koskenniemi’s two-level program
and Evan Antworth’s PC-KIMMO.

I The output from the compiler is a simple finite-state automaton or
a transducer.

I The result of the compilation may be composed with a rule
transducer or transducers that effect morphological alternations or
in other ways modify the initial result.

Yulia Zinova Computational Morphology: Xerox finite state tool, lexc



What is lexc?
Making lexical transducers

Commands

I To start the compiler, type ‘lexc’

I There are three groups of commands: Input/Output, Operations,
and Display.

I Each group is further divided into subsections of related
commands.

I To get the list of commands, type the question mark.

I ‘help’ command, followed by a name of a particular command,
gives advice on what the commands do;

I ‘help all’ prints out all help messages.

Yulia Zinova Computational Morphology: Xerox finite state tool, lexc



What is lexc?
Making lexical transducers

Main commands

I Three main commands: ‘compile-source’, ‘read-rules’,

‘compose-result.’

I Source net is the automaton (either a simple lexicon or a
transducer) compiled from the input lexicon.

I The command ‘compile-source’ creates the source net.

I Rule nets refers to a set of rule transducers created by the two-level
rule compiler (or by other means) and saved in binary form.

I The command ‘read-rules’ reads the rule nets from a file.

I The command ‘compose-result’ composes the source net with
the rule net or nets and produces the result net.

Yulia Zinova Computational Morphology: Xerox finite state tool, lexc



What is lexc?
Making lexical transducers

A very simple example

I Let us construct a lexicon that contains the forms of two lexemes,
dine and line.

I line: a noun and a verb, dine: a verb.

I The simplest way to define the lexicon is to list all the forms under
the heading LEXICON Root (ex0-lex.txt).

I Compilation of this lexicon creates a finite-state machine (fsm)
that accepts all only the listed word forms.

Yulia Zinova Computational Morphology: Xerox finite state tool, lexc



What is lexc?
Making lexical transducers

Basic rules

I There may be any number of sublexicons, but one of them must
have the name Root.

I The other sublexicons, if any, are named according to the needs
and tastes of the lexicon writer.

I Entries are separated by semicolons.

I Each entry consists of a form, possibly null, and a continuation
class.

I The continuation class must be the name of another sublexicon or
#, a terminator symbol.

I The word END at the end of the file is optional.

I The exclamation point, !, marks a comment; the rest of the line is
ignored.

Yulia Zinova Computational Morphology: Xerox finite state tool, lexc



What is lexc?
Making lexical transducers

Word classes

I Let us define another version of the lexicon that distinguishes
stems from suffixes (ex1-lex.txt).

I Some entries have no content other than the continuation class,
some have a sublexicon name as the continuation class.

I compile it!
compile-source ex1-lex.txt

I The command ‘save-source’ saves the compiled source net as a
binary file.

Yulia Zinova Computational Morphology: Xerox finite state tool, lexc



What is lexc?
Making lexical transducers

Exercise: A lexicon of dates

I Let us construct a lexicon that contains all valid dates of the form
“<month> <date>, <year>”, such as March 14, 1993.

I Restrictions: exact format (a space between the month and the
day, a comma and a space between the day and the year), <year>
between 0 and 9999.

I Every date in the lexicon should be valid; April 31, 1993 should not
be included (30 days in April). Assume that February has 29 days.

I Whitespace characters (blank, tab, carriage return, linefeed) are
ignored by the compiler. % should be placed in front of a blank
that should not count as whitespace.

I The numeral 0 is also special and has to be prefixed with % to be
an ordinary digit.
June 10, 2000 → June% 1%0,% 2%0%0%0

Yulia Zinova Computational Morphology: Xerox finite state tool, lexc



What is lexc?
Making lexical transducers

Exercise: Eliminate unwanted leap days

I February has 29 days only in years that are divisible by four, except
that centuries are leap years only if the number is still divisible by
four when the last two zeros are left out.

I For example, 1900 was not a leap year but in the year 2000 there
were 29 days in February.

I Write a transducer that eliminates unnecessary leap days (use
xfst). Compile this transducer and store it as ex3-rule.fst

Yulia Zinova Computational Morphology: Xerox finite state tool, lexc



What is lexc?
Making lexical transducers

Exercise: Combine lexicon and transducer

I Load the lexicon...
compile-source ex2-lex.txt

I and the transducer...
read-rules ex3-rule.fst

I and compose them...
compose-result

I now try the status command

I Are you on the right track?

I Try lookup February 29, 1900

I If everything is fine, save-result ex3-lex.fsm

Yulia Zinova Computational Morphology: Xerox finite state tool, lexc



What is lexc?
Making lexical transducers

Exercise: Combine lexicon and transducer

I Load the lexicon...
compile-source ex2-lex.txt

I and the transducer...
read-rules ex3-rule.fst

I and compose them...
compose-result

I now try the status command

I Are you on the right track?

I Try lookup February 29, 1900

I If everything is fine, save-result ex3-lex.fsm

Yulia Zinova Computational Morphology: Xerox finite state tool, lexc



What is lexc?
Making lexical transducers

Exercise: Combine lexicon and transducer

I Load the lexicon...
compile-source ex2-lex.txt

I and the transducer...
read-rules ex3-rule.fst

I and compose them...
compose-result

I now try the status command

I Are you on the right track?

I Try lookup February 29, 1900

I If everything is fine, save-result ex3-lex.fsm

Yulia Zinova Computational Morphology: Xerox finite state tool, lexc



What is lexc?
Making lexical transducers

Exercise: Combine lexicon and transducer

I Load the lexicon...
compile-source ex2-lex.txt

I and the transducer...
read-rules ex3-rule.fst

I and compose them...
compose-result

I now try the status command

I Are you on the right track?

I Try lookup February 29, 1900

I If everything is fine, save-result ex3-lex.fsm

Yulia Zinova Computational Morphology: Xerox finite state tool, lexc



What is lexc?
Making lexical transducers

Exercise: Combine lexicon and transducer

I Load the lexicon...
compile-source ex2-lex.txt

I and the transducer...
read-rules ex3-rule.fst

I and compose them...
compose-result

I now try the status command

I Are you on the right track?

I Try lookup February 29, 1900

I If everything is fine, save-result ex3-lex.fsm

Yulia Zinova Computational Morphology: Xerox finite state tool, lexc



What is lexc?
Making lexical transducers

A simple lexical transducer (1)

I A lexical transducer is a lemmatizer that maps inflected surface
forms to their canonical dictionary representations and vice versa.

I In simple cases, such transducers can be compiled directly from a
source lexicon.

I We can modify the minilexicon we created to make it a
morphological analyzer/generator for the forms of dine and line.

I In addition to the citation form of the word itself, the entries now
contain morphological information:

I part of speech (+N, +V)
I type of inflection (+Pl, +Sg, +Base, +Sg3, +Past,

+PastPart)

Yulia Zinova Computational Morphology: Xerox finite state tool, lexc



What is lexc?
Making lexical transducers

A simple lexical transducer (1)

I Some of the entries now contain a pair of forms: a lexical form and
a surface form, separated by a colon.

I The compiler interprets such a pair as a regular relation, a
sequence of pairwise correspondences between the symbols.

I For example, the entry +Pl:s pairs the lexical form +Pl with the
surface form s.

I In other words, in forms constructed with this entry, plural is
realized as s.

I The command ‘compile-source’ converts the lexicon
(ex4-lex.txt) into a transducer, which can be used bidirectionally
for analysis (‘lookup’) as well as generation (‘lookdown’).

I Exercise: add swim/swam/swum to the lexicon.

Yulia Zinova Computational Morphology: Xerox finite state tool, lexc



What is lexc?
Making lexical transducers

Composing with rule transducers

I Let us consider augmenting our minilexicon with the present
participle forms dining, lining, and swimming.

I Problem: the deletion of the stem final e in dining and lining and
the gemination of m in swimming
dine:din

line:lin

swim:swimm

I Exercise: write rules for this and compose them with the modified
lexicon (include participles)

I Test: lookup swimming, lookup dining, lookdown
line+V+PresPart

Yulia Zinova Computational Morphology: Xerox finite state tool, lexc



What is lexc?
Making lexical transducers

Cascade of compositions

I For languages with a more complex morphology than English, it
may be practical to describe morphological alternations by two
separate rule systems.

I The lexicon is composed with the first rule system and the
resulting transducer is composed with the second set of rules.

I In a cascaded composition, the result net of the first composition
becomes the source net for the second step.

I The command ‘result-to-source’ makes that switch.

I When a new set of rules has been read in, the composition can be
continued.

I At every point in the cascade, the result net maps the lexical forms
to the output of the last rule or set of rules in the composition.

Yulia Zinova Computational Morphology: Xerox finite state tool, lexc



What is lexc?
Making lexical transducers

Checking the result

I Commands for single-item testing: ‘random’, ‘lookup’, and
‘lookdown’.

I The ‘check-all’ command systematically compares the source
net to the result net and displays the effect of the compose
operation.

I It looks at every word in the source net and tries to find all words
in the result net that have been derived from it by composition.

I Try it!

Yulia Zinova Computational Morphology: Xerox finite state tool, lexc



What is lexc?
Making lexical transducers

References:

Karttunen, L. (1993). Finite-state lexicon compiler. Technical
report, Xerox Palo Alto Research Center, Palo Alto, California.

Karttunen, L. (2003). Finite-state morphology.

Yulia Zinova Computational Morphology: Xerox finite state tool, lexc


	What is lexc?
	Making lexical transducers

