Formal Languages and Automata Theory Exercise sheet 2: Push-down Automata

Yulia Zinova

WiSe 2017/2018, Heinrich-Heine-Universität Düsseldorf

Definition 1 A push-down automaton (PDA) M is a tuple $\langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, F \rangle$ with

- Q is a finite set of states.
- Σ is a finite set, the input alphabet.
- Γ is a finite set, the stack alphabet.
- $q_0 \in Q$ is the initial state.
- $Z_0 \in \Gamma$ is the initial stack symbol.
- $F \subseteq Q$ is the set of final states.
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \to \mathcal{P}_{fin}(Q \times \Gamma^*)$ is the transition function. $(\mathcal{P}_{fin}(X)$ is the set of finite subsets of X).

Definition 2 An instantaneous description of a PDA is a triple (q, w, γ) with

- $q \in Q$ is the current state of the automaton,
- $w \in \Sigma^*$ is the remaining part of the input string, and
- $\gamma \in \Gamma^*$ is the current stack.

There are two alternatives for the definition of the language accepted by a PDA $M = \langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, F \rangle$:

Definition 3 The language accepted by M with a final state is $L(M) := \{w \mid (q_0, w, Z_0) \stackrel{*}{\vdash} (q_f, \epsilon, \gamma) \text{ for a } q_f \in F \text{ and a } \gamma \in \Gamma^*\}$

 $L(M) := \{w \mid (q_0, w, Z_0) \vdash (q_f, \epsilon, \gamma) \text{ for } u q_f \in \Gamma \text{ and } u \gamma \in \Gamma \}$

Definition 4 The language accepted by M with an empty stack is

 $N(M) := \{ w \mid (q_0, w, Z_0) \stackrel{\circ}{\vdash} (q, \epsilon, \epsilon) \text{ for } a \ q \in Q \}$

Exercise 1 Prove that the two modes of acceptance are equivalent, i.e., for each language L: there is a PDA M_1 with $L = L(M_1)$ iff there is a PDA M_2 with $L = N(M_2)$.

Definition 5 A PDA that has at most one choice of move in any state is called a deterministic PDA. Non-deterministic PDA (NPDA) provides non-determinism in the moves defined. A class of languages that are generated by PDAs is called DCFL (deterministic context free languages).

Exercise 2 Construct a PDA that accepts the language of palindromes. Is it a NPDA or a DPDA?

Exercise 3 Explore whether DCFLs are closed under complementation.

Exercise 4 Prove the equivalence of CFGs and PDAs.