Formal Languages and Automata Theory Homework 5 (Regular expressions), Due date 21.11.2017

Yulia Zinova

WiSe 2017/2018, Heinrich-Heine-Universität Düsseldorf

Exercise 1 (2 points) Find a regular expression for $L = \{vwv : v, w \in \{a, b\}^*, |v| = 2\}$.

Exercise 2 (3 points) Write regular expressions for the following languages ($\Sigma = \{0, 1\}$):

- All strings ending in 10.
- All strings not ending in 10.
- All strings containing an odd number of 0's.

Exercise 3 (6 points) Find regular grammars for the following languages ($\Sigma = \{a, b\}$):

- $L = w : n_a(w)$ is even, $n_b(w) \ge 4$.
- $L = w : n_a(w)$ and $n_b(w)$ are both even.
- $L = w : n_a(w) n_b(w) \mod 3 = 1.$

Exercise 4 (3 points) Obtain NFA for the following right linear grammar (start symbol S):

- $S \rightarrow 0 \ 1 \ A \mid 1 \ 0 \ B$
- $A \rightarrow 0 \ 1 \ C \mid 0 \ 1$
- $B \rightarrow 1 \ \theta \ D \mid 1 \ \theta$
- $C \rightarrow 0 \ 1 \ A$
- $S \rightarrow 1 \ 0 \ B$

Exercise 5 (3 points) For a regular expression of length n, what would be the minimum number of states required in NFA to accept the same language? Justify the answer. **Hint:** Use mathematical induction to prove your statement.