Formal Languages and Automata Theory Homework 5 (Regular expressions), Due date 21.11.2017

Yulia Zinova

WiSe 2017/2018, Heinrich-Heine-Universität Düsseldorf

Exercise 1 (2 points) Find a regular expression for $L=\left\{v w v: v, w \in\{a, b\}^{*},|v|=2\right\}$.

Exercise 2 (3 points) Write regular expressions for the following languages $(\Sigma=\{0,1\})$:

- All strings ending in 10.
- All strings not ending in 10.
- All strings containing an odd number of 0 's.

Exercise 3 (6 points) Find regular grammars for the following languages ($\Sigma=\{a, b\}$):

- $L=w: n_{a}(w)$ is even, $n_{b}(w) \geq 4$.
- $L=w: n_{a}(w)$ and $n_{b}(w)$ are both even.
- $\left.L=w: n_{a}(w)-n_{b}(w)\right) \bmod 3=1$.

Exercise 4 (3 points) Obtain NFA for the following right linear grammar (start symbol S):

- $S \rightarrow 01 A \mid 10 B$
- $A \rightarrow 01 C \mid 01$
- $B \rightarrow 10 D \mid 10$
- $C \rightarrow 01 A$
- $S \rightarrow 10 B$

Exercise 5 (3 points) For a regular expression of length n, what would be the minimum number of states required in NFA to accept the same language? Justify the answer.
Hint: Use mathematical induction to prove your statement.

