Formal Languages and Automata Theory Homework 4 (FSA), Abgabe 14.11.2017

Yulia Zinova

WiSe 2017/2018, Heinrich-Heine-Universität Düsseldorf

Exercise 1 (3 points) Convert the NFA defined by

- $\delta\left(q_{0}, a\right)=\left\{q_{0}, q_{1}\right\}$
- $\delta\left(q_{1}, b\right)=\left\{q_{1}, q_{2}\right\}$
- $\delta\left(q_{2}, a\right)=\left\{q_{2}\right\}$
- $\delta\left(q_{1}, \epsilon\right)=\left\{q_{1}, q_{2}\right\}$
with initial state q_{0} and final state q_{2} into an equivalent $D F A$.

Exercise 2 (3 points) In converting NFA to DFA, the number of states may increase substantially. Give upper and lower bounds on the increase in number of states for an n-state NFA.

Exercise 3 (4 points) Let L be any language. Define even(w) as the string obtained by extracting from w the letters in even-numbered positions; that is, if $w=a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} \ldots$, then even (w) $=a_{2} a_{4} a_{6} \ldots$ Corresponding to this, we can define a language even $(L)=\{$ even (w) : w $\in L\}$.
Prove that if L is regular, so is even (L).
Exercise 4 (4 points) Show that if L is regular, so is L^{R}.

Exercise 5 (4 points) Is it true that for $N F A M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, the complement of $L(M)$ is equal to the set $\left\{w \in \Sigma^{*}: \delta^{*}\left(q_{0}, w\right) \cap F=\emptyset\right\}$? If so, prove it. If not, give a counterexample.

