
On the Relation Between Fine-Tuning, Topological Properties, and Task
Performance in Sense-Enhanced Embeddings

Deniz Ekin Yavas1, Timothée Bernard2, Benoît Crabbé2, Laura Kallmeyer1
Heinrich Heine University Düsseldorf1, Université Paris Cité2

{deniz.yavas, laura.kallmeyer}@hhu.de1

{timothee.bernard, benoit.crabbe}@u-paris.fr2

Abstract
Topological properties of embeddings, such as
isotropy and uniformity, are closely linked to
their expressiveness, and improving these prop-
erties enhances the embeddings’ ability to cap-
ture nuanced semantic distinctions. However,
fine-tuning can reduce the expressiveness of the
embeddings of language models. This study
investigates the relation between fine-tuning,
topology of the embedding space, and task per-
formance in the context of sense knowledge
enhancement, focusing on identifying the topo-
logical properties that contribute to the suc-
cess of sense-enhanced embeddings. We ex-
periment with two fine-tuning methods: Super-
vised Contrastive Learning (SCL) and Super-
vised Predictive Learning (SPL). Our results
show that SPL, the most standard approach, ex-
hibits varying effectiveness depending on the
language model and is inconsistent in produc-
ing successful sense-enhanced embeddings. In
contrast, SCL achieves this consistently. Fur-
thermore, while the embeddings with only in-
creased sense-alignment show reduced task per-
formance, those that also exhibit high isotropy
and balance uniformity with sense-alignment
achieve the best results. Additionally, our find-
ings indicate that supervised and unsupervised
tasks benefit from these topological properties
to varying degrees.

1 Introduction

The contextualized word embeddings of pre-trained
language models (LMs) are powerful tools, but
do not align well with word senses: the embed-
ding spaces typically do not exhibit distinct clus-
ters corresponding to similar meaning (Yenicelik
et al., 2020). Therefore, using these embeddings
as such does not always yield satisfactory results
on word sense identification tasks (Pilehvar and
Camacho-Collados, 2019; Samih and Kallmeyer,
2023; Yavas, 2024; Yavas et al., 2024). One way
to overcome this problem is to enhance the embed-
dings with external sense knowledge (Peters et al.,

2019; Lauscher et al., 2020; Garí Soler and Apid-
ianaki, 2020; Levine et al., 2020; Mosolova et al.,
2024).

Fine-tuning is a widely adopted method for
knowledge enhancement, where LM embeddings
are updated by incorporating external knowledge.1

However, fine-tuning can also reduce the expres-
siveness of the LM embeddings, i.e., their ability to
capture and distinguish nuanced relations, due to re-
duced isotropy (Zhang et al., 2022). Therefore, it is
essential to determine the effects of fine-tuning on
the topology of the embedding space in the context
of sense knowledge enhancement. Furthermore,
it is also important to understand the relation be-
tween topological properties and task performance.
Despite their importance, these relations remain
unexplored, and this study aims to fill this gap. To
this end, we compare different fine-tuning meth-
ods, investigate how they transform the embedding
space of LMs, evaluate the resulting embeddings in
terms of task performance, and finally, identify the
topological properties associated with successful
sense-enhanced embeddings.

We evaluate the embeddings based on three
topological properties: sense-alignment, unifor-
mity (Wang and Isola, 2020), and isotropy (Mu
and Viswanath, 2018). Sense-alignment evaluates
how close to each other are the embeddings of word
occurrences sharing the same sense. Isotropy eval-
uates how evenly the embeddings are distributed
across all directions in the embedding space, while
uniformity measures the density of their distribu-
tion, evaluating whether they spread uniformly in
the embedding space.

Both isotropy and uniformity are related to the
expressiveness of the embeddings (Gao et al., 2021;
Rajaee and Pilehvar, 2021a; Zhang et al., 2022).
Ideally, an embedding space should be uniform
and isotropic, while maintaining semantic relations

1See the survey by Hu et al. (2023).



as much as possible. This enables utilization of
the entire space and directions to capture nuanced
semantic relations and differences between word
occurrences. However, LM embeddings have in-
herently limited expressiveness (Gao et al., 2019).
As a result, even the embeddings of random words
often exhibit high similarity (Ethayarajh, 2019).
However, improving the uniformity and isotropy
of the LM embeddings can lead to better perfor-
mance on semantics-related tasks (Biś et al., 2021;
Gao et al., 2021; Liu et al., 2021a,b; Rajaee and
Pilehvar, 2021a).

We experiment with two fine-tuning methods:
Supervised Contrastive Learning (SCL) and Su-
pervised Predictive Learning (SPL). They differ
primarily in their objectives: SCL aims to push in-
stances of the same class (i.e., sense) together while
pushing instances from different classes apart; SPL
aims to predict the correct class of an instance. We
are particularly interested in these methods because
SPL is the standard fine-tuning method for LMs,
while fine-tuning via Contrastive Learning has been
shown to improve the isotropy and uniformity of
the embedding space (see Gao et al., 2021; Liu
et al., 2021a,b; Yan et al., 2021, which, however,
do not focus on knowledge enhancement).2

The few studies that compare SPL and SCL
have primarily focused on performance differences,
showing better performance with SCL in differ-
ent contexts, but without investigating the quality
of the resulting embeddings (Gunel et al., 2020;
Khosla et al., 2020). In the context of sense knowl-
edge enhancement, we aim to investigate whether
the performance advantage of SCL holds and to
understand the underlying factors in terms of topo-
logical properties in performance differences. For
this purpose, we conduct detailed experiments, in-
cluding experiments focusing on the temperature
parameter of the loss functions used, as this pa-
rameter influences class separation and has been
shown to impact the topological properties of the
embeddings in Unsupervised Contrastive Learning
(UCL; Wang and Liu, 2021).

We enhance the embeddings of LMs with Word-
Net supersense information (Fellbaum, 1998) us-
ing different fine-tuning methods, and evaluate
the word sense identification performance with
the resulting embeddings on the Word-in-Context
task (WiC; Pilehvar and Camacho-Collados, 2019).

2These studies mostly focus on Unsupervised Contrastive
Learning, a related but distinct concept that does not rely on
explicit external knowledge.

WiC is a binary classification task, where the goal
is to determine if a target word form (e.g., bass) has
the same meaning in two different contexts (e.g.,
she plays the bass and this fish is a bass). We ex-
periment with both supervised and unsupervised
setups for the task. This allows us to investigate
whether supervised and unsupervised tasks bene-
fit from different topological properties in embed-
dings to achieve good performance.

In addition to these fine-tuning methods, we con-
duct further experiments to investigate the effects
of two factors on task performance: task similarity,
and isotropy in isolation. For task similarity, we
fine-tune the LM on a task similar to the down-
stream task (WiC). We refer to this fine-tuning ap-
proach as task adaptation. For isotropy in isolation,
we apply the isotropization post-processing method
proposed by Mu and Viswanath (2018) to the origi-
nal LM embeddings, allowing us to investigate the
effects of isotropy without incorporating external
knowledge to the embeddings. We further evaluate
the embeddings obtained from both methods.

Our study provides novel insights into the rela-
tion between fine-tuning, topology of the embed-
ding space, and task performance in the context of
sense knowledge enhancement. The key findings
of this work are as follows.

• SPL and SCL fine-tuning methods transform
the embedding spaces of the LMs differently
with respect to sense-alignment, uniformity,
and isotropy.

• The properties of the embeddings obtained af-
ter fine-tuning appear consistently, regardless
of the original embeddings.

• The effectiveness of SPL shows mixed results,
varying depending on the LM. The embed-
dings created via SPL do not outperform the
original LM embeddings in some cases. In
contrast, SCL shows more consistent improve-
ments and often achieves the highest scores,
making it a more effective method for sense
knowledge enhancement.

• The embeddings with only increased sense-
alignment perform worse than the original
LM embeddings. The highest performance is
achieved with those that exhibit a significant
increase in both isotropy and sense-alignment.

• The embeddings that achieve the best perfor-
mances overall balance uniformity and sense-



alignment.

• The relative importance of these properties
varies across supervised and unsupervised se-
tups.

2 Related Work

2.1 Enhancing LM Embeddings with Sense
Knowledge

Prior research on sense knowledge enhancement
has primarily focused on injecting external knowl-
edge during the pre-training phase of the LMs
(Peters et al., 2019; Lauscher et al., 2020; Levine
et al., 2020). A few studies have fine-tuned LMs
for a similar purpose (Garí Soler and Apidianaki,
2020; Mosolova et al., 2024). Garí Soler and Apidi-
anaki (2020) fine-tune BERT on semantic similarity
datasets using both a classification head (via SPL)
and cosine distance head, which utilizes Cosine
Embedding Loss to adjust the embedding distances
according to their meaning similarity. They show
improved performance on the Graded Word Sim-
ilarity in Context task (Armendariz et al., 2020)
over the original LM embeddings. Mosolova et al.
(2024) fine-tune BERT via SCL using examples
of use of different senses of the same word form.
They show improved performance on the WiC task
over the original LM embeddings. Despite the pop-
ularity of SPL in other contexts, these studies use
other methods than SPL alone. It is still unclear
whether SPL can produce similar results, how the
two methods differently alter the embedding space,
and which topological properties may be associated
with any performance differences.

Finally, Bihani and Rayz (2021) introduce a
post-processing method to generate isotropic sense-
enhanced embeddings. Their approach integrates
and adapts the isotropization method of Mu and
Viswanath (2018) with the retrofitting method pro-
posed by Faruqui et al. (2015). However, they do
not evaluate the resulting embeddings in terms of
task performance.

2.2 Topology of the Embedding Space
2.2.1 Alignment and Uniformity
Wang and Isola (2020) propose metrics alignment3

and uniformity. They compare SPL and UCL for
3They propose alignment in the context of UCL. The aim

of UCL is usually to push the embeddings of a data instance
and of its augmented (as in “data augmentation”) version
closer, while pushing the embeddings of other instances apart.
Alignment quantifies the closeness between a data point and
its augmented version.

pre-training encoders for language and vision and
show that the embeddings produced by these meth-
ods differ in terms of alignment and uniformity,
as well as downstream task performance. They
find that UCL produces more uniform embeddings,
leading to improved performance. Furthermore,
they emphasize the importance of balancing align-
ment and uniformity to generate successful embed-
dings in terms of downstream task performance.

A similar effect of uniformity has been observed
with BERT embeddings specifically. Gao et al.
(2021) focus on improving the sentence embed-
dings of BERT and show that fine-tuning the model
via UCL or SCL results in embeddings exhibiting
increased uniformity and leading to better results
on Semantic Textual Similarity Tasks.

Finally, Wang and Liu (2021) have shown a con-
nection between the temperature parameter in the
loss and both the uniformity and tolerance of the
embeddings in UCL. Tolerance is measured as the
average similarity of instances within the same
class. In their experiments, successful embeddings
are only obtained when balancing these two prop-
erties.

2.2.2 Isotropy

Previous studies have observed that the embed-
dings of LMs are anisotropic, and it has been sug-
gested that isotropy is linked to better performance
on semantics-related tasks (Biś et al., 2021; Gao
et al., 2021; Liu et al., 2021a,b; Rajaee and Pile-
hvar, 2021a; Yan et al., 2021). Several methods
have been proposed to improve isotropy, including
regularization techniques during the pre-training
of the LM (Gao et al., 2019; Wang et al., 2019a,b;
Zhang et al., 2020) and post-processing methods
(Bihani and Rayz, 2021; Biś et al., 2021; Rajaee
and Pilehvar, 2021a). In addition, fine-tuning LMs
via Contrastive Learning has been shown to in-
crease the isotropy of their embeddings (Gao et al.,
2021; Liu et al., 2021a,b; Yan et al., 2021).

Anisotropy is also seen in fine-tuned LM embed-
dings (Rajaee and Pilehvar, 2021b; Zhang et al.,
2022) and fine-tuning has been shown to increase
anisotropy (Zhang et al., 2022). Furthermore,
post-processing methods designed to increase the
isotropy of pre-trained LM embeddings tend to be
detrimental in terms of downstream task perfor-
mance when applied to the embeddings produced
by fine-tuned LMs (Rajaee and Pilehvar, 2021b;
Zhang et al., 2022).
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Figure 1: Two fine-tuning methods for sense knowledge enhancement based of WordNet supersenses. For Supervised
Predictive Learning (a), a supersense classification head is added to the encoder. For Supervised Contrastive Learning
(b), for each anchor (all nouns and verbs occurrences in a batch of sentences are simultaneously anchors), the
encoder is fine-tuned to push closer to the anchor the word occurrences with the same supersense while pushing
away from it those with a different supersense.

3 Methodology

In this section, we describe our external source
for sense knowledge (Section 3.1) and the three
methods that we use to enhance the contextualized
word embeddings produced by two LMs: BERT
(base-uncased) (Devlin et al., 2019) and RoBERTa
(base) (Liu et al., 2019).

These methods are (1) fine-tuning the LMs for
sense knowledge enhancement using SPL and SCL
(Section 3.2), (2) fine-tuning the LMs for task adap-
tation (Section 3.3), and (3) applying an isotropiza-
tion post-processing method to the original LM
embeddings (Section 3.4). The resulting sets of
embeddings are evaluated in Section 4. To pre-
vent over-fitting during fine-tuning (first two meth-
ods), the first 8 layers of the LMs are frozen4 and a
dropout rate of 0.7 is used after each hidden layer.5

3.1 Data

To fine-tune the LMs for both sense knowledge and
task adaptation, we use the SemCor corpus (Miller
et al., 1993), which is based on WordNet (Fell-
baum, 1998). SemCor provides sentences in which
word occurrences that belong to certain parts-of-
speech are annotated with a WordNet synset label,
which in turn is linked to a supersense. Super-
senses are broad semantic categories that group
word senses and are easier to identify than word-
specific senses. For example, “bass” maps to the

4We experimented with freezing either no layer, the first
4 layers, the first 8 layers, or the first 11 layers. Freezing the
first 8 layers gave the best WiC task performance.

5Code is available at: https://github.com/yavasde/
Fine-Tuning-For-Sense-Enhancement/

supersense artifact in “she plays the bass” and
to animal in “this fish is a bass”. Since the WiC
task focuses only on verbs and nouns, we ignore
all other parts-of-speech. We split the corpus into
train, validation, and test sets (70:15:15) and use
the test set to evaluate the topology of the embed-
ding spaces, as detailed in Section 4.1.

3.2 Fine-Tuning for Sense Knowledge
Enhancement

For Supervised Predictive Learning (SPL), a clas-
sification head is added to the LM and the model
is fine-tuned by minimization of the Cross-Entropy
loss to predict the supersense label of each verb and
noun token.6 See Figure 1, (a), for an illustration.

For Supervised Contrastive Learning (SCL), the
LM is fine-tuned by minimization of the SCL loss
(Khosla et al., 2020) to push together the embed-
dings of the word occurrences that have the same
supersense label while pushing apart the embed-
dings of the word occurrences with different super-
sense labels.7 See Figure 1, (b), for an illustration.
The SCL loss for a batch is given by Formula 1,
where f is a vector similarity metric, τ is the tem-
perature parameter8, I is the set of anchors in the
batch (all noun and verb occurrences), for each
i ∈ I , P (i) is the set of positive instances for i

6As these LMs works with subword tokens, we consider
two labels for each supersense; one (B-) used for tokens start-
ing a word occurrence, and one (I-) used for other tokens.

7We use as embedding of a word occurrence the average
of the embeddings of its subword tokens, as suggested by
Mosolova et al. (2024).

8The temperature controls the separation between positive
and negative instances. See Section 5 for details.

https://github.com/yavasde/Fine-Tuning-For-Sense-Enhancement/
https://github.com/yavasde/Fine-Tuning-For-Sense-Enhancement/


(i.e., word occurrences with the same label as i,
excluding i itself), and A(i) is the set of all posi-
tive or negative instances for i in the batch (again,
excluding i itself).

LSCL = −
∑
i∈I

1

|P (i)|

∑
p∈P (i)

log

 exp

(
f(zi,zp)

τ

)
∑

a∈A(i) exp
(

f(zi,za)
τ

)
 (1)

The batches are sampled randomly. Following
previous studies (Chen et al., 2020; Gao et al., 2021;
Yan et al., 2021; Mosolova et al., 2024), we use
Cosine Similarity.

We experiment with different temperature values
for both SCL and SPL in Section 5. The details
about the hyperparameters and the training can be
found in Appendix A.

3.3 Fine-Tuning for Task Adaptation
We experiment with fine-tuning the LMs with an
objective similar to the downstream task (WiC).
Specifically, we fine-tune the LMs via SPL to clas-
sify word occurrence pairs and determine if they
share the same supersense. The goal is to investi-
gate how task similarity affects downstream task
performance. More precisely, we aim to investi-
gate how adjusting the embedding space to suit the
downstream task compares to enhancing it with
sense knowledge in terms of performance.

3.3.1 Data Preprocessing
Starting from SemCor as outlined in Section 3.1,
we randomly pair sentences containing the same
word (either verb or noun) and label the pair de-
pending on whether this word shares the same
supersense in both sentences. We only consider
words that occur in the corpus with at least two
supersenses.

3.3.2 Method
We concatenate the sentence pairs with a separator
token in between and feed the result to the LM. We
concatenate the embeddings of the two occurrences
of the target word (produced by the final layer of the
model) and feed the result to a binary classification
layer.9 The LM is fine-tuned via SPL using Cross-
Entropy Loss. Details about the hyperparameters
and the training can be found in Appendix A.

3.4 Isotropization
We apply the isotropization post-processing
method proposed by Mu and Viswanath (2018) to

9We use as embedding of a word occurrence the average
of the embeddings of its subword tokens.

increase the isotropy of the original BERT embed-
dings. This post-processing method is applied to
the embeddings of the test set, which are obtained
as described in Section 4.1, to evaluate their topo-
logical properties, and also to the WiC dataset to as-
sess task performance with isotropized embeddings.
The goal is to evaluate the effects of isotropization
in isolation on task performance, without adding
additional knowledge.

The method involves three steps. First, the em-
beddings are centered by computing their mean
vector and subtracting the mean vector from each
embedding. Then, Principal Component Analysis
is applied to the centered embeddings to identify
the components that carry high variance. Finally,
for some k ∈ N (in our case, k = 1), the k top
principal components are removed from each cen-
tered embeddings — this is done by subtraction of
its projections on these k directions.10 Because the
principal components are the directions with the
highest variance, removing these components helps
create a more uniform distribution of directions.

4 Evaluation of the Embeddings

We evaluate the embeddings from both BERT and
RoBERTa, including the original embeddings (with
and without isotropization), embeddings of the
models fine-tuned for sense knowledge enhance-
ment using SCL and SPL, and embeddings of the
models fine-tuned for task adaptation. The evalua-
tion is based on both the topology of the embedding
space and the performance on the WiC task.11

4.1 Topology of the Embedding Space
We evaluate the quality of the embeddings based
on their topological properties using three metrics:
sense-alignment, uniformity, and isotropy. This
evaluation is performed on the test set (see Section
3.1), using nouns and verbs only. The embeddings
are extracted from the final layer of the LM and
are L2-normalized before the evaluation. We write
E = [e1, . . . , eN ] the matrix of all extracted em-
beddings.

Sense-Alignment: This metrics is defined as
the average over all supersenses of the average

10Our experiments show that removing the first top principal
component is enough to substantially increase uniformity and
isotropy. For detailed experiments, see Appendix B.

11We conducted additional experiments with the Word
Sense Disambiguation task (Raganato et al., 2017) and ob-
served performance patterns similar to those seen in the WiC
task across different embeddings. Details of these experiments
can be found in Appendix C.



Topological Properties WiC
Uniformity Sense-Alignment Isotropy Threshold Classifier

BERT 2.84 0.33 0.58 63.2 55.9 (0.7)
+Isotropization 3.95 0.04 0.98 63.6 56.7 (0.2)
+SCL 2.81 0.72 0.92 64.7 56.8 (0.4)
+SPL 2.49 0.52 0.55 64.0 55.8 (0.5)
+Task Adaptation 3.37 0.22 0.68 62.9 56.5 (0.5)

RoBERTa 0.73 0.83 0.40 61.2 56.5 (0.5)
+Isotropization 3.89 0.07 0.97 63.2 56.7 (0.5)
+SCL 2.92 0.71 0.90 64.8 59.3 (0.3)
+SPL 2.95 0.67 0.70 65.2 58.8 (0.6)
+Task Adaptation 1.87 0.55 0.46 61.2 56.5 (0.9)

Table 1: Evaluation results of different embeddings in terms of topological properties and task performance. Higher
values are better for all topological property metrics. Accuracy is reported for WiC Threshold and WiC Classifier.
The mean results over 5 runs are given with standard deviation in brackets for WiC Classifier. The values that are
better than the original LM embeddings are given in bold. The models with the best WiC task performance across
various temperature settings are reported (BERT+SCL: 0.3 BERT+SPL: 0.1, RoBERTa+SCL: 0.2 RoBERTa+SPL:
4.5).

pairwise cosine similarity for word occurrences
with this supersense. Higher values indicate better
sense-alignment.

Uniformity: This metrics measures the density
of the distribution of the embeddings in their vector
space (Wang and Isola, 2020). It is defined as

− log

 2

N(N − 1)

∑
1≤i<j≤N

exp(−2∥ei − ej∥
2
2)

 (2)

Higher values indicate more uniform distribu-
tions of the embeddings.

Isotropy: This metrics measures the distribu-
tion of the embeddings across all directions of the
embedding space (Mu and Viswanath, 2018). It is
defined as

minu∈U F (u)

maxu∈U F (u)
(3)

where U is the set of eigenvectors of ETE and
F is the partition function introduced by Arora
et al. (2016) as

F (u) =

N∑
i=1

exp(u · ei) (4)

The isotropy score ranges from 0 to 1 and higher
values indicate more isotropic distributions.

4.2 WiC Performance
The WiC task is a binary classification task where
the goal is to determine if two occurrences of a
same word form, either both verbs or both nouns,
have the same meaning. We evaluate the WiC per-
formance of two methods, as proposed in the origi-
nal paper (Pilehvar and Camacho-Collados, 2019):
WiC Threshold and WiC Classifier. Comparing
these two methods allows us to better understand

how different topological properties of the embed-
dings help to solve this task in two setups, unsuper-
vised and supervised.

For both methods, we extract the embeddings
produced by the last 4 layers of the LM and average
them to obtain a single embedding per token, as
done in previous work (Liu et al., 2021b). Addi-
tionally, in cases where the target word is tokenized
into subwords by the model tokenizer, we average
all subword embeddings to obtain one embedding
per word.

WiC Threshold: Two occurrences of a word are
classified as having the same meaning if the cosine
similarity of their embeddings is higher than a fixed
threshold. This threshold is tuned on the develop-
ment set and we report the accuracy achieved with
the best threshold on the test data.12

WiC Classifier: We train a binary classifier to
predict whether two occurrences of a word have
the same meaning. The classifier takes the con-
catenation of their embeddings as input. We use a
feed-forward network with one hidden layer with
ReLU activation.13 We train five randomly initial-
ized classifiers for each type of embedding and
report the mean accuracy.

4.3 Results
Table 1 summarizes our results; we report the re-
sults for the best temperature for each fine-tuning
method, determined by the average performance
on both WiC task setups.

12We have experimented with various similarity metrics,
including dot product and Euclidean Distance, and found that
Cosine Similarity yields the highest accuracy scores overall.

13See Appendix A for details on the hyperparameters and
training.



Language Model-Specific Analysis. BERT and
RoBERTa embeddings exhibit different topologi-
cal properties. More specifically, RoBERTa em-
beddings are more sense-aligned, less uniform,
and less isotropic. Additionally, embeddings of
two LMs differ in performance: BERT embed-
dings yield better performance on WiC Threshold,
whereas RoBERTa embeddings yield better per-
formance on WiC Classifier. Overall, fine-tuned
RoBERTa embeddings yield better results on both
setups, and the improvements achieved are more
significant compared to BERT embeddings.

Comparison of Fine-Tuning Methods. For both
LMs, isotropization leads to improved performance
on both WiC Threshold and WiC Classifier com-
pared to the original embeddings. SCL and SPL
produce embeddings that differ in terms of topo-
logical properties, however, both methods yield
embeddings with similar properties across the two
LMs. Compared to SPL, SCL generates embed-
dings that are more isotropic and more sense-
aligned with both models. Uniformity values, how-
ever, varies slightly depending on the LM.

Considering WiC performance, SCL achieves
the highest average WiC scores with both BERT
and RoBERTa, outperforming other methods. With
BERT, SPL embeddings outperform the original
LM embeddings only on WiC Threshold, showing
limited and inconsistent improvements in overall
WiC performance. Lastly, fine-tuning for task adap-
tation does not lead to consistent improvements:
it improves performance on WiC Classifier with
BERT, but reduces it on WiC Threshold, and shows
no gains for either task setup with RoBERTa.

The differences in isotropy and sense-alignment
between SCL (higher) and SPL (lower) might be
somewhat surprising when considering the two
training objectives. SCL works by explicitly push-
ing closer to each other embeddings of same su-
perpense tokens and pushing farther embeddings
of different supersense tokens. SPL, when imple-
mented with a linear classification layer, works in
a similar way, although indirectly: each supersense
is represented by a vector in the embedding space,
and token embeddings are pushed both closer to
their supersense vector and farther from other su-
persense vectors. One obvious difference between
the two methods is that we interpret closer/farther
in terms cosine similarity for SCL and in terms
of dot product for SPL. Another one is the use of
class vectors in SPL which, depending on their ran-

dom initialization, might cause SPL to affect the
embedding space in more arbitrary ways.

Topological Properties and Task Performance.
Our results are in line with previous studies that
show the importance of isotropy in dowstream task
performance (Biś et al., 2021; Gao et al., 2021; Liu
et al., 2021a,b; Rajaee and Pilehvar, 2021a). We ob-
tain higher WiC performance with more isotropic
embeddings. However, the best performances are
achieved with the embeddings that are both more
isotropic and sense-aligned with both LMs.

Additionally, high sense-alignment alone does
not guarantee strong task performance. RoBERTa
embeddings exhibit lower WiC Threshold scores
compared to BERT embeddings despite being more
sense-aligned. Similarly, fine-tuning BERT with
SPL increases sense-alignment without increasing
isotropy or uniformity. This only improves per-
formance on WiC Threshold while reducing per-
formance on WiC Classifier. These findings are
consistent with previous studies emphasizing the
importance of balancing multiple metrics (Wang
and Isola, 2020; Wang and Liu, 2021; Gao et al.,
2021).

In contrast to these studies, we observes that
increased uniformity does not always yield better
results and that its effects vary by model. With
BERT, the best-performing embeddings have sim-
ilar (but slightly lower) uniformity values as the
original embeddings. With RoBERTa, however,
increasing uniformity and isotropy leads to better
results. Note that these LMs differ notably in terms
of their initial sense-alignment and uniformity val-
ues.

Lower uniformity indicates that embeddings are
more concentrated in specific regions of the space.
In our case, these clusters likely arise from sense-
alignment, where the regions are influenced by
sense similarities.14 However, the results show
that maintaining the distribution of embeddings
(uniformity) as much as possible while increasing
sense similarities is more beneficial. This suggests
a trade-off between these metrics, and balancing
them proves more beneficial. See Appendix D for
the visualization of the embedding spaces, illus-
trating the relation between sense-alignment and
uniformity.

14The studies mentioned evaluate the impact of uniformity
in other contexts. When embeddings are intentionally aligned
with specific knowledge, reduced uniformity may arise from
meaningful similarities, whereas, e.g., in encoder training, it
may arise from unwanted artifacts in the data.
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Figure 2: Relation between temperature, different topological properties, and WiC performance. We report the
results for the embeddings of LMs fine-tuned with SCL and SPL with different temperature values (normalized), the
original LM embeddings, and isotropized LM embeddings (indicated by markers). Three topological properties are
studied: sense-alignment (a), uniformity (b), and isotropy (c). For WiC task performance, WiC Threshold (d) and
WiC Classifier (e) performances are studied. The mean results over 5 runs are given for WiC Classifier.

5 Relation Between Temperature and
Topology of the Embedding Space

In SCL, the temperature parameter of the loss con-
trols the strength of the separation between pos-
itive and negative instances. A lower tempera-
ture increases the influence of harder-to-separate
instances, effectively generating harder negatives.
As for SPL, the temperature parameter scales the
probability distribution of the classes and higher
values of temperature lead to softer probability dis-
tributions.

We experiment with different temperature val-
ues to investigate the effects of temperature on the
topology of the embedding space. Furthermore,
we show how the embeddings with different topo-
logical properties perform differently on the WiC
task. These experiments provide a more in-depth
understanding of the fine-tuning methods and gives
us a more complete picture of how variations in
topological properties relate to task performance.

Temperature is already a parameter in the SCL
loss function (see Formula 1). We introduce a tem-
perature parameter into the Cross-Entropy loss by
scaling the logits before applying the softmax. In
the context of SCL loss, the temperature typically
ranges between 0 and 1, whereas in Cross-Entropy
loss, the temperature can vary over a wider range,

typically between 0.1 and 100 (Agarwala et al.,
2020). We experiment with 13 temperature values
for both loss functions ranging between 0.03 and 1
for SCL and between 0.1 and 15 for SPL.15

5.1 Results

See Figure 2 for the relation between temperature,
topological properties, and WiC performance.16

Overall, temperature affects the topology of the
embedding space. A clear trade-off is observed
between sense-alignment, isotropy, and uniformity.
As sense-alignment decreases, both uniformity and
isotropy tend to increase.

Comparison of Fine-Tuning Methods. Differ-
ent fine-tuning methods create embeddings with
different properties. Overall, SCL creates more
sense-aligned, more isotropic, but less uniform em-
beddings. On the other hand, SPL creates less
sense-aligned, less isotropic, but more uniform em-
beddings. Furthermore, both methods produce em-
beddings with similar topological properties with
both LMs, despite the initial topological differences
between the models.

15The selected temperatures for SCL are: 0.03, 0.05, 0.07,
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. The selected
temperatures for SPL are: 0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4,
4.5, 5, 10, 15.

16See Appendix E for complete values.



Considering task performance, both fine-tuning
methods lead to performance improvement with
RoBERTa, while only SCL leads to performance
improvement with BERT. With BERT, SPL embed-
dings do not outperform the original BERT embed-
dings at any temperature value on WiC Classifier
and they only outperform them in early tempera-
tures on WiC Threshold. Overall, SCL yields better
results, demonstrating high performance with both
models and task setups.

Language Model-Specific Analysis. The perfor-
mance trends are similar across models, however,
the improvements with RoBERTa are more substan-
tial, despite both LMs having embeddings with sim-
ilar properties after fine-tuning. With RoBERTa,
both fine-tuning methods yield more comparable
performance, whereas with BERT, SCL shows a
clear performance advantage.17

Unsupervised and Supervised Tasks. Each task
exhibits different trends. On WiC Threshold, the
fine-tuned embeddings generally outperform the
original LM embeddings. Sense-alignment seems
to play a significant role after isotropy reaches a
certain threshold. Notably, less isotropic but more
sense-aligned BERT+SPL embeddings outperform
isotropized BERT embeddings. Overall, high per-
formances are achieved when both isotropy and
sense-alignment exceed certain levels.

WiC Classifier performance varies more across
models and fine-tuned model embeddings do not
always surpass the original LM embeddings in
terms of performance. Both high levels of isotropy
and sense-alignment seem important. For exam-
ple, with BERT, surpassing the isotropized embed-
dings is challenging and only happens at the latest
temperatures with SCL, when isotropy and sense-
alignment are both significantly high. Similarly,
highly sense-aligned original RoBERTa embed-
dings already start with better performance than
the BERT embeddings and the best performances
are achieved with RoBERTa when both properties
are significantly high.

6 Conclusion

In this study, we explore the relation between dif-
ferent fine-tuning methods, the topology of the re-
sulting embedding spaces and the downstream task
performance in the context of sense knowledge

17The difference in improvement between the LMs may be
influenced by factors beyond the scope of our current analysis,
warranting further investigation.

enhancement with two pre-trained language mod-
els (LMs), BERT and RoBERTa. We focus on
three topological properties: sense-alignment, uni-
formity, and isotropy.

Our comparison of two fine-tuning methods, Su-
pervised Contrastive Learning (SCL) and Super-
vised Predictive Learning (SPL), shows that these
methods create embedding spaces that differ in
terms of topological properties and the resulting
embeddings achieve different task performance. Al-
though the embeddings of BERT and RoBERTa dif-
fer in their initial properties, fine-tuning methods
affect the embedding spaces of both LMs in similar
ways, resulting in embeddings with similar prop-
erties. Overall, SPL — the standard fine-tuning
method — shows mixed results, with effectiveness
varying by LM. It produces embeddings that out-
perform the original LM embeddings in most cases,
though not consistently. In contrast, SCL demon-
strates more consistent improvements with both
LMs and generally outperforms SPL.

With respect to topological properties, our re-
sults show that the embeddings with increased
isotropy achieve better task performance. How-
ever, the best-performing embeddings are those
with high sense-alignment and isotropy. Embed-
dings with only high sense-alignment do not always
yield better results and can underperform compared
to the original LM embeddings. Furthermore, we
observe a trade-off between uniformity and sense-
alignment, with optimal results achieved by bal-
ancing the two. Overall, our results highlight the
importance of balancing all three properties for
optimal task performance.

Moreover, our results show that the degree to
which these topological properties are beneficial in
a downstream task differs between a supervised and
an unsupervised system. Both sense-alignment and
isotropy contribute to performance, but their rela-
tive importance varies across task setups. Finally,
our findings suggest that fine-tuning an LM on a
task similar to the downstream task does not nec-
essarily produce embeddings that improve down-
stream task performance.

In conclusion, our findings highlight the im-
portance of topological properties of the embed-
dings during knowledge enhancement, demonstrat-
ing that fine-tuning an LM without considering
these properties may not always lead to improved
downstream task performance.



Limitations

While the results of this study offer valuable in-
sights, several limitations must be acknowledged.
The main limitation of this study is that our ex-
periments only focus on English, which limits the
generalization of our findings to other languages.
However, we expect similar results with other lan-
guages as topological properties of the embeddings
are more closely linked to factors such as learning
objectives, loss functions used for the training of
the models.

Similarly, our experiments rely on WordNet su-
persenses and the SemCor corpus, which limits the
generalization of our results to other sense inven-
tories or datasets. However, these resources are
widely used and highly valuable for word sense
tasks.

We further acknowledge that there may be other
properties influencing the success of language
model embeddings, and our study focuses on only
three specific properties. However, isotropy and
uniformity are commonly used metrics, especially
in terms of expressiveness. Furthermore, our study
offers potential explanations for the observed per-
formance differences across different types of em-
beddings with these properties.

Finally, we rely on Cosine Similarity as a simi-
larity metric for both training and evaluation of the
models. However, this metric is the most widely
used and successful semantic similarity metric. Us-
ing this metric in both stages does not influence the
core findings of our study; instead, it highlights the
importance of isotropy.
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Dataset, evaluation data, is accessed via https:
//super.gluebenchmark.com/tasks. Both Sem-
Cor and WiC are created for the English language.

Licenses for the model and data used:
• WiC: Creative Commons Attribution-

NonCommercial 4.0 License.
• BERT: Apache license 2.0

A.1 Fine-Tuning for Sense Knowledge
Enhancement

A.1.1 Supervised Contrastive Learning
• Optimizer: Adam
• Batch Size: 8
• Learning Rate:

– BERT: 1e− 05,
– RoBERTa: 1e− 05, 1e− 04 after τ=0.5,

• Number of Epochs (best τ ):
– BERT: 4,
– RoBERTa: 4,

• τ (best):
– BERT: 0.3,
– RoBERTa: 0.2,

• Loss: SCL
• We employ early stopping based on validation

loss.

A.1.2 Supervised Predictive Learning
• Classification Head: A dense layer with a

Softmax activation function
• Optimizer: Adam
• Batch Size: 8
• Learning Rate:

– BERT: 1e− 05,
– RoBERTa: 1e− 05, 1e− 04 after τ=4,

• Number of Epochs (best τ ):
– BERT: 3,
– RoBERTa: 2,

• τ (best):
– BERT: 0.1,
– RoBERTa: 4.5,

• Loss: Cross-Entropy
• We employ early stopping based on validation

loss.

A.2 Fine-Tuning for Task Adaptation
• Classification Head: A dense layer with a

Sigmoid activation function
• Optimizer: Adam
• Batch Size: 8

• Learning Rate:
– BERT: 5e− 06,
– RoBERTa: 1e− 06

• Number of Epochs:
– BERT: 2,
– RoBERTa: 4,

• Loss: Cross-Entropy
• We employ early stopping based on validation

loss.

A.3 WiC Task

• A feed-forward network with one hidden layer
with ReLU activation and an output layer with
Sigmoid activation.

• Optimizer: Adam
• Batch Size: 32
• Learning Rate: 1e− 04
• Drop-out: 0.2
• We employ early stopping based on validation

loss.
• We train a classifier five times using each type

of embedding and report the mean test accu-
racy.

B Isotropization Experiments

For the isotropization post-processing method, we
test the effect of removing various numbers of top
components from the BERT embeddings, specifi-
cally 1, 5, 10, 15, and 20 components. The quality
of the resulting embeddings is presented in Table
2.

This method successfully increases the isotropy
and uniformity of BERT embeddings. The number
of top components removed influences the trade-
off between isotropy and the retention of semantic
information in the embeddings. Isotropy and uni-
formity improve after removing just the first top
component, with both continuing to improve as
more components are removed. Furthermore, we
notice that sense-alignment drops significantly only
after the first top component is removed. As more
components are removed, less semantic informa-
tion is preserved, and sense-alignment continues to
reduce.

C Word Sense Disambiguation Task

The Word Sense Disambiguation (WSD) task (Ra-
ganato et al., 2017) involves selecting the correct
WordNet sense label for a target word in context
from its candidate senses. Similar to our approach,

https://super.gluebenchmark.com/tasks
https://super.gluebenchmark.com/tasks


Model Type # Uniformity Sense-Alignment Isotropy
BERT - 2.840 0.332 0.588
BERT+Isotropization

1 3.958 0.045 0.986
5 3.967 0.031 0.988
10 3.971 0.022 0.993
15 3.972 0.018 0.995
20 3.973 0.015 0.995

Table 2: Topological properties of the BERT embeddings and isotropized BERT embeddings with different numbers
of components removed. We report 3 topological properties: sense-alignment, uniformity, and isotropy. Higher
values are better for all topological properties.

Figure 3: The t-SNE visualizations of the test data using embeddings from different models. Models: BERT
embeddings (left), BERT+SCL embeddings with τ = 0.2 (middle), BERT+SCL embeddings with τ = 1.0 (right).
Different colors refer to different supersenses.

Model WSD
BERT 48.1

+Isotropization 47.9
+SCL 48.9
+SPL 48.8
+Task Adaptation 48.7

RoBERTa 49.0
+Isotropization 50.4
+SCL 53.3
+SPL 52.2
+Task Adaptation 50.6

Table 3: WSD results using different embeddings. F1
is reported. The values that are better than the original
LM embeddings are given in bold. The results of the
models with the best WiC task performance across vari-
ous temperature settings are reported (BERT+SCL: 0.3
BERT+SPL: 0.1, RoBERTa+SCL: 0.2 RoBERTa+SPL:
4.5).

SemCor is used as the training corpus in the orig-
inal task. Following previous work (Liu et al.,
2021b), we design a one-shot setting in which
each sense is represented by a single example from

WordNet. We compute the cosine similarity be-
tween the embedding of the target word in the ex-
ample sentences and that of the test instance, and
select the sense label with the highest similarity.
We exclude the senses that do not have any exam-
ples in WordNet.

The results with the embeddings of the LMs and
fine-tuned LMs (best temperature) can be seen in
Table 3. While isotropization does not always im-
prove the performance, the SCL fine-tuning method
achieves the best results with both LMs.

D Visualization of the Embedding Spaces

Since uniformity is measured using the pairwise
similarities between embeddings, the decrease in
uniformity observed in sense-enhanced embed-
dings may be associated with the formation of
dense sense clusters. As sense-alignment increases
and uniformity decreases, instances of the same
sense may become closer. This relation can be cap-
tured with t-SNE visualization, as it is useful for
capturing the local relations in the data.

The t-SNE visualizations of the test set using
embeddings from different models are shown in



Figure 3. The models and the topological proper-
ties of their embeddings are as follows:

• BERT:
Sense-Alignment: 0.33, Uniformity: 2.84

• BERT+SCL with τ = 0.2:
Sense-Alignment: 0.72, Uniformity: 2.96

• BERT+SCL with τ = 1.0:
Sense-Alignment: 0.82, Uniformity: 1.89

We observe that the embeddings of BERT+SCL
(τ = 1.0) with reduced uniformity show to form
more dense clusters of same sense instances.

E Temperature Details

The complete topological property and WiC per-
formance values for embeddings extracted from
models with different temperatures are provided in
Table 4.



Model Type Temperature Topological Properties WiC Performance
Uniformity Sense-Alignment Isotropy Threshold Classifier

BERT - -2.83 0.33 0.58 63.2 55.90 (0.7)
BERT+SPL

0.1 2.49 0.52 0.55 64.0 55.8 (0.5)
0.5 3.44 0.39 0.78 64.1 55.4 (0.3)
1 3.31 0.50 0.69 63.6 55.28 (0.8)

1.5 3.14 0.58 0.78 63.9 55.43 (0.5)
2 3.04 0.63 0.64 63.1 55.15 (0.1)

2.5 3.03 0.64 0.65 63.7 55.36 (0.8)
3 2.98 0.66 0.70 63.8 55.31 (0.2)

3.5 2.93 0.67 0.74 63.0 54.76 (0.4)
4 2.88 0.69 0.63 63.4 54.98 (0.4)

4.5 2.88 0.69 0.70 63.7 55.22 (0.7)
5 2.88 0.68 0.72 63.0 55.29 (0.6)
10 2.77 0.72 0.67 62.8 55.9 (0.8)
15 2.74 0.72 0.62 63.5 55.73 (0.4)

BERT+SCL
0.03 0.99 0.91 0.42 64.5 55.65 (0.3)
0.05 1.55 0.86 0.44 64.0 55.52 (0.6)
0.07 2.05 0.80 0.47 63.7 56.26 (0.4)
0.1 2.64 0.72 0.68 64.0 55.86 (1.1)
0.2 2.96 0.69 0.86 64.5 56.56 (0.5)
0.3 2.81 0.72 0.92 64.7 56.8 (0.4)
0.4 2.69 0.75 0.91 64.4 56.75 (0.4)
0.5 2.55 0.74 0.90 64.7 56.72 (0.3)
0.6 2.27 0.78 0.86 63.8 56.81 (0.6)
0.7 2.17 0.78 0.86 63.8 56.94 (0.7)
0.8 2.02 0.80 0.84 63.1 57.16 (0.7)
0.9 1.95 0.82 0.83 62.7 55.99 (0.4)
1 1.89 0.82 0.82 62.7 56.51 (0.3)

RoBERTa - 0.73 0.83 0.40 61.2 56.50 (0.5)
RoBERTa+SPL

0.1 1.31 0.76 0.44 63.2 56.09 (0.4)
0.5 3.39 0.39 0.66 63.0 55.91 (0.6)
1 3.31 0.50 0.66 64.8 56.15 (0.5)

1.5 3.16 0.57 0.76 64.9 57.03 (0.4)
2 3.06 0.62 0.75 64.7 58.40 (0.6)

2.5 3.07 0.63 0.67 64.0 56.92 (0.5)
3 3.01 0.65 0.78 64.7 57.48 (0.9)

3.5 2.98 0.66 0.63 64.0 59.82 (0.2)
4 2.95 0.67 0.63 64.7 58.96 (0.8)

4.5 2.95 0.67 0.70 65.2 58.88 (0.6)
5 2.93 0.67 0.71 64.3 59.18 (0.6)
10 2.86 0.69 0.69 65.2 60.05 (1.3)
15 2.79 0.71 0.69 63.8 59.26 (0.8)

RoBERTa+SCL
0.03 0.97 0.92 0.40 64.5 56.54 (0.3)
0.05 1.54 0.86 0.47 64.5 56.51 (0.3)
0.07 2.03 0.81 0.53 64.9 57.26 (0.4)
0.1 2.58 0.74 0.65 64.2 56.38 (0.3)
0.2 2.92 0.71 0.90 64.8 59.31 (0.3)
0.3 2.80 0.73 0.89 63.9 58.88 (0.6)
0.4 2.67 0.74 0.89 61.6 60.74 (0.3)
0.5 2.57 0.77 0.91 63.3 60.32 (0.1)
0.6 2.53 0.77 0.90 63.7 59.49 (0.2)
0.7 2.34 0.79 0.90 63.0 60.91 (0.3)
0.8 2.23 0.79 0.90 60.7 59.53 (0.3)
0.9 2.02 0.82 0.83 61.0 60.02 (0.7)
1 2.00 0.81 0.89 60.3 60.14 (0.4)

Table 4: Topological properties and WiC results of the embeddings of different models with different temperature
parameter values. The results for original LM embeddings (BERT and RoBERTa) are given for comparison.
Accuracy is given for WiC Threshold and WiC Classifier results. For WiC Classifier, the mean results over 5 runs
are given with standard deviation in brackets. Higher values are better for all topological property metrics.


	Introduction
	Related Work
	Enhancing LM Embeddings with Sense Knowledge
	Topology of the Embedding Space
	Alignment and Uniformity
	Isotropy


	Methodology
	Data
	Fine-Tuning for Sense Knowledge Enhancement
	Fine-Tuning for Task Adaptation
	Data Preprocessing
	Method

	Isotropization

	Evaluation of the Embeddings
	Topology of the Embedding Space
	WiC Performance
	Results

	Relation Between Temperature and Topology of the Embedding Space
	Results

	Conclusion
	Model Hyperparameters and Training Details
	Fine-Tuning for Sense Knowledge Enhancement
	Supervised Contrastive Learning
	Supervised Predictive Learning

	Fine-Tuning for Task Adaptation
	WiC Task

	Isotropization Experiments
	Word Sense Disambiguation Task
	Visualization of the Embedding Spaces
	Temperature Details

