
Language Modeling
LMs, tokenization, vocabularies

Younes Samih, David Arps: From Static Embeddings to Transformers. HHU 2022



Language Modeling

- A language model (LM) assigns probability to sequences of words
- In practice, the concrete value does not matter: 

- You don’t care that P(“I’m levitating”)=0.00000035 
- You do care that P(“I’m levitating”) > P(“sleeping levitating”)

- So you often care about maximizing P (the most likely scenarios)
- A LM is trained on some dataset, not on all sentences in a language
- The dataset selection influences the models prediction! 



What defines a language model?

Triple of 

- LM architecture (e.g. neural architecture)
- Training data (language(s), domain(s))
- LM task



Language Modeling Tasks

- Next Word prediction
- Masked Language Modeling (Cloze task)
- Next Sentence Prediction
- … 



Next word prediction (NWP)

- Widely used: Recurrent models, GPT*, 
ngrams

- Good for text generation: Similar to 
writing/reading/listening

- Why artificially restrict attention to 
previous words for predictions?

Step Given Prediction

1 [BOS] Never

2

3

4

5



Next word prediction (NWP)

- Widely used: Recurrent models, GPT*, 
ngrams

- Good for text generation: Similar to 
writing/reading/listening

- Why artificially restrict attention to 
previous words for predictions?

Step Given Prediction

1 [BOS] Never

2 [BOS] Never gonna

3

4

5



Next word prediction (NWP)

- Widely used: Recurrent models, GPT*, 
ngrams

- Good for text generation: Similar to 
writing/reading/listening

- Why artificially restrict attention to 
previous words for predictions?

Step Given Prediction

1 [BOS] Never

2 [BOS] Never gonna

3 [BOS] Never gonna give

4

5



Next word prediction (NWP)

- Widely used: Recurrent models, GPT*, 
ngrams

- Good for text generation: Similar to 
writing/reading/listening

- Why artificially restrict attention to 
previous words for predictions?

Step Given Prediction

1 [BOS] Never

2 [BOS] Never gonna

3 [BOS] Never gonna give

4 [BOS] Never gonna give you

5



Next word prediction (NWP)

- Widely used: Recurrent models, GPT*, 
ngrams

- Good for text generation: Similar to 
writing/reading/listening

- Why artificially restrict attention to 
previous words for predictions?

Step Given Prediction

1 [BOS] Never

2 [BOS] Never gonna

3 [BOS] Never gonna give

4 [BOS] Never gonna give you

5 [BOS] Never gonna give you up



Masked Language Modeling (MLM)

Given:

“In a [MASK] deluged by irrelevant [MASK], clarity is power.” (Yuval Noah Harari)

Predict:

“In a world deluged by irrelevant information, clarity is power.” (Yuval Noah Harari)

- Works really well when sentences are processed at once. 
- Details: BERT paper (Devlin et al. 2019)



Next Sentence Prediction (NSP)

Given two sentences:

[CLS] In a hole in the ground there lived a hobbit. [SEP] The hobbit was 4 feet 
high. [CLS]

Predict if they occur in the training data one after the other:

True/False

- Used in original BERT paper but is not used that frequently afterwards
- Nice to have for relations between sentences 



Autoregressive and Autoencoder LMs

- Autoregressive: Every LM prediction depends on previous predictions
- Autoencoder: The LM gets a (corrupted) version of a sequence as input, and 

the goal is to predict/encode this sequence. Example: Masked Language 
Modeling



Why is Language Modeling so powerful?

- LMs do not require 
hand-labeled data 
(self-supervision)

- MLM and NWP combine 
many domains of linguistic 
knowledge

- E.g. morphology, syntax, 
semantics

Ex. from DistilBERT on https://huggingface.co/distilbert-base-uncased



A bit of “history”: n-grams

- pre-neural approach to LM
- method: collect transition frequencies from large corpora
- larger n often leads to better results but needs a lot more data
- similar to NWP but the left context is fixed:

- for bigrams: P(you|I’ve waited here for) ≅ P(you|for)
- nice: very fast, model is built by counting from a corpus
- not nice: bad at handling rare words, words not seen in training
- not nice: can’t keep track of context larger than n words

- Old smartphone: “Hello the morning the morning the morning…” 



Vocabulary: How to turn text into vectors

- Method 1: Word-based

- Problem 1: Not good at rare words, unknown words
- Problem 2: related word forms are treated separately

- inform, informs, informing, information have shared meaning components. But vectors 
are learned independently 



Method 2: Character-based

- Each character gets its own vector
- Small vocabulary: only ~100 characters/vectors
- Nice: there are no unknown characters
- Not nice: Character vectors need to store a lot more context information
- Example: Y,o,u, ,s,h,o,u,l,d…

- The static vector for “o” is always the same and needs to store information about all 
contexts/words “o” occurs in 

a [0.1 0.8 0.4 0.7 … ]

b [0.4 0.9 -0.3 0.1 …]

c [0.3 -0.2 0.1 -0.9 …]

…



Best of both worlds: Subword-based methods
- Basic idea: The most frequent subsequences get their own vector

Text Alphabet Most freq. bigram

1. d,i,e, ,r,e,n,t,n,e,r, ,e,s,s,e,n, ,d,i,e, ,e,n,t,e,n d,e,i,n,s,t e,n: 4

2. d,i,e, ,r,EN,t,n,e,r, ,e,s,s,EN, ,d,i,e, ,EN,t,EN d,e,i,n,s,t,EN EN,t: 2

3. d,i,e, ,r,ENT,n,e,r, ,e,s,s,EN, ,d,i,e, ,ENT,EN d,e,i,n,s,t,EN,ENT d,i: 2

4. DI,e, ,r,ENT,n,e,r, ,e,s,s,EN, DI,e, ,ENT,EN d,e,n,s,t,EN,ENT,DI DI,e: 2

5 DIE, ,r,ENT,n,e,r, ,e,s,s,EN, ,DIE, ,ENT,EN d,e,n,s,t,EN,ENT,DIE



Best of both worlds: Subword-based methods
- Basic idea: The most frequent subsequences get their own vector
- Typical alphabet size: 30K+ vocabulary items
- Nice: 

- Frequent words get their own vector
- capture related meaning of rare words, related words
- no unknown words

- Not nice: Arbitrary behavior for some systematic tokens (names, numbers)



Most common subword-based methods

● WordPiece: (character level)
○ The vocabulary is initialized with individual characters in the language, 
○ then the most frequent combinations of symbols in the vocabulary are iteratively added to the 

vocabulary.
● BPE: (Byte Pair Encoding)

○ data compression algorithm in which the most common pair of consecutive bytes of data is 
replaced with a byte that does not occur in that data.

○ BPE ensures that the most common words are represented in the vocabulary as a single 
token

○ Rare words are broken down into subword tokens
○ This is in agreement with what a subword-based tokenization algorithm does.



Practical session: Vocabulary

Complete the tasks in the notebook tokenization.ipynb on colab or on your 
computer.


