Conceptual Fingerprints: Lexical Decomposition by Means of Frames – a Neuro-cognitive Model

Wiebke Petersen & Markus Werning

Heinrich-Heine-Universität Düsseldorf Forschergruppe Funktionalbegriffe und Frames (FOR 600)

Conceptual Fingerprints (ICCS 2007)

Wiebke Petersen & Markus Werning

Classification of Concepts

Sortal Frames

Neuro-Cognitive Interpretation

classifying concepts

person, pope, house, verb, sun, Mary, wood, brother, mother, meaning, distance, spouse, argument, entrance

Classification of Concepts

Sortal Frames

Neuro-Cognitive Interpretation

classifying concepts: arity

arity:1	person, pope, house, verb, sun, Mary, wood
arity:>1	brother, mother, meaning, distance, spouse, argument, entrance

Conceptual Fingerprints (ICCS 2007)

Wiebke Petersen & Markus Werning

Classification of Concepts

Sortal Frames

Neuro-Cognitive Interpretation

classifying concepts: uniqueness of reference

	no unique reference	unique reference
arity:1	person, house, verb, wood	Mary, pope, sun
arity:>1	brother, argument, entrance	mother, meaning, distance, spouse

Sortal Frames

Neuro-Cognitive Interpretation

concept types (Löbner)

	no unique reference	unique reference	
arity:1	person, house, verb, wood	Mary, pope, sun	
arity:>1	brother, argument, entrance	mother, meaning, distance, spouse	relational
		identificational	

Classification of Concepts

Sortal Frames

Neuro-Cognitive Interpretation

concept types (Löbner)

SC: sortal concept	IC: individual concept	
INDEFINITE	DEFINITE	
person, house, verb, wood	Mary, pope, sun	
RC: (proper) relational concept	FC: functional concept	
RC: (proper) relational concept INDEFINITE + POSSES- SIVE	FC: functional concept DEFINITE + POSSESSIVE	

Classification of Concepts

Sortal Frames

Neuro-Cognitive Interpretation

lolly-frame (sortal concept)

Conceptual Fingerprints (ICCS 2007)

Wiebke Petersen & Markus Werning

Sortal Frames

Neuro-Cognitive Interpretation

sortal-frame definition

Definition

Sortal frames are rooted connected, directed acyclic graphs with

- one central node (= root node)
- nodes labeled with types
- edges labeled with attributes
- no node with two equally labeled outgoing edges

Classification of Concepts

Sortal Frames

Neuro-Cognitive Interpretation

AVM-abstraction of sortal frames

Sortal Frames

Neuro-Cognitive Interpretation

subsumption

 $\left[\texttt{STICK}: \left[\texttt{SHAPE}: \textit{long} \right]_{\textit{stick}} \right]_{\textit{lolly}} \sqsubseteq$

attributes in frames

Barsalou, 1992: Frames, Concepts, and Conceptual Fields

"I define an attribute as a **concept** that describes an aspect of at least some category member." "Values are subordinate concepts of an attribute."

Guarino, 1992: *Concepts, attributes and arbitrary relations* "We define attributes as **concepts** having an associate relational interpretation, allowing them to act as conceptual components as well as concepts on their own."

Classification of Concepts

Sortal Frames

Neuro-Cognitive Interpretation

interpretation of functional concepts

denotational interpretation

A functional concept denotes a set of entities:

 $\delta: \mathcal{R} \to \mathbf{2}^{\mathcal{U}}$

 δ (mother) = {*m* | *m* is the mother of someone}

relational interpretation

A functional concept has also a relational interpretation:

 $\varrho: \mathcal{R} \to \mathbf{2}^{\mathcal{U} imes \mathcal{U}}$

 $\varrho(\text{mother}) = \{(p, m) \mid m \text{ is the mother of } p\}$

consistency postulate (Guarino, 1992)

Any value of an relationally interpreted functional concept is also an instance of the denotation of that concept.

If $(p, m) \in \varrho$ (mother), then $m \in \delta$ (mother).

Sortal Frames

Neuro-Cognitive Interpretation

attributes in frames

thesis:

Attributes in frames are relationally interpreted functional concepts!

consequence:

Sortal frames decompose sortal concepts into functional concepts!

Sortal Frames

Neuro-Cognitive Interpretation

type signatures (adapted from Carpenter 1992)

Definition

Approp : ATTR \times TYPE \rightarrow TYPE is an appropriateness specification on (TYPE, \supseteq) if ATTR \subseteq TYPE and $\forall a \in$ ATTR:

attribute introduction: ∃Intro(a) ∈ TYPE with:

- Approp(a, Intro(a)) = a and
- ∀t ∈ TYPE: if Approp(a, t) is defined, then Intro(a) ⊑ t.
- **specification closure:** If Approp(a, s) is defined and $s \sqsubseteq t$, then Approp $(a, s) \sqsubseteq$ Approp(a, t).
- attribute consistency: If Approp(a, s) = t, then a ⊑ t.

Sortal Frames

Neuro-Cognitive Interpretation

Frames and Typicality

instantiation function

 $d: \texttt{TYPE} \times \mathcal{U} \to [0,1]$

degree to which an object of the universe $\ensuremath{\mathcal{U}}$ instantiates a certain type

reference-shifting function

 $\sigma:\mathcal{U}\times\Pi\to\mathcal{U}$

maps every object of the universe relative to the path in question onto the same or another object of the universe

Sortal Frames

Neuro-Cognitive Interpretation

Frames and Typicality

classical bi-valued case

$$d(C, x) = \min_{m \in \mathsf{MaxPath}} d(\Theta(m), \sigma(x, m))$$

an object x is to be subsumed under the decomposed concept C iff all the types of the end nodes are properly instantiated $(\Theta(m)$ denotes the type of path m)

typicality values

$$d(C, x) \geq \min_{m \in MAXPATH} \max_{t \in ALT(m)} \tau(C, m, t) d(t, \sigma(x, m))$$

 $\tau(C, m, t)$ tells how typical the type *t* is for the object $\sigma(x, m)$ given that *x* instantiates *C*

Coherency Chains

 $d(C,x) \geq \min_{m \in \operatorname{MaxPath}} \max_{t \in \operatorname{Alt}(m)} \tau(C,m,t) \, d(t,\sigma(x,m))$

- Assumption: Concept C is completely decomposable into a fully specified sortal frame.
- Lowest boundary of the degree to which the network represents an object x under the concept

strength of the strongest weighted coherency chain.

 Any coherence chain is regarded just as strong as the weakest weighted coherence in the chain.

Neurobiological Hypotheses

Topology of Neural Feature Maps

Cells coding for properties of some feature dimension are organized in clusters with a twofold topological structure:

-Neighboring regions of cells (hypercolumns) correspond to neighboring receptive fields.
-Columns (i.e., clusters of cells with the same receptive field and similar feature sensitivity) fan around a pinwheel center.

Orientation map of cat visual cortex. Colors code orientations as indicated by the colored bars. Pinwheel centers are marked (Crair et al. 1997).

Object-Related Synchronization

Cells coding properties of the same object synchronize; cells coding properties of different objects de-synchronize.

Two cells from different columns of area 17 of cat visual cortex with overlapping receptive fields are recorded (from Engel et al. 1991).

- Gestalt principles: Neighboring stimulus elements with like properties are grouped into one object
- Implementation: Oscillators activated by neighboring stimulus elements with like properties synchronize, oscillators activated by neighboring stimulus elements with unlike properties de-synchronize.

(Maye, Neurocomputing, 2003; Maye & Werning, Neurocomputing, 2004, Chaos & Complexity Letters, 2007)

