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Induction of Classifications from Linguistic Data
Rainer Osswald1 and Wiebke Petersen2

Abstract. We present a flexible approach for extracting hierarchical
classifications from linguistic data. To this end, the framework of ob-
servational logic is introduced, which extends the logic that underlies
standard Formal Concept Analysis by allowing disjunctive rules and
exclusions. We give a rigorous mathematical characterization of how
the chosen rule type affects the structure of the induced hierarchy.
The framework is applied to the induction of hierarchical classifica-
tions from linguistic databases. The pros and cons of several types
of hierarchies are discussed in detail with respect to criteria such as
compactness of representation, suitability for inference tasks, and in-
telligibility for the human user.

1 THE LOGIC OF LINGUISTIC
CLASSIFICATION

A simple method for classifying (linguistic) data is provided bytax-
onomic trees, which are ubiquitous in linguistic textbooks. For ex-
ample, nominal words are traditionally subdivided into pronouns,
nouns, adjectives, etc; pronouns are further subdivided into inter-
rogative pronouns, personal pronouns, etc, etc. From a logical point
of view each concept of a taxonomic treeimplies its superordinate
concept; e.g.pronounimpliesnominal word. Furthermore, any two
subconcepts of the same concept areincompatible, as e.g.nounand
adjective. In addition, classification by taxonomic trees is often as-
sumed to beexhaustivein the sense that every concept implies the
disjunction of its immediate subconcepts.

Systemic networks, which have their roots in systemic grammar
(e.g. [10]), provide a more sophisticated formalism for presenting
linguistic classification. Figure 1 shows a small fragment of such
a network. The classifiers aligned to the right of a bar constitute a
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Figure 1. Part of a systemic classification of English pronouns (after [21])
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choice system; its members are assumed to be pairwise incompat-
ible. Choice systems haveentry conditionswhich are determined
by the network structure: brace and bar correspond respectively to
conjunction and disjunction. Entry condition and choice disjunction
are assumed to imply each other. So,third ∧ singular is equiva-
lent to feminine∨ masculine∨ neuter, and every two members of
{feminine,masculine, neuter} are incompatible.

Both types of classifications can be regarded astheoriesconsisting
of (universally quantified) conditionals whose premises and conclu-
sions are built by finite conjunction and disjunction from primitive
predicates or concepts (see Section 2.1). Given such a classification,
it is natural to ask for theconjunctive conceptsor entity typesthat are
compatible with the classification. Roughly speaking, a conjunctive
concept is a set of primitive concepts that isconsistently closedwith
respect to the classificational theory in question (see Section 2.3 for
details).3

The rest of the paper is organized as follows: In Section 2, obser-
vational theories are introduced, which subsume simple inheritance
networks as well as Horn theories. In addition, it is shown how the
canonical universe of such a theory depends on the class the theory
belongs to. This result is used in Section 3 for inducing different
types of conceptual hierarchies from a formal context. In the case
of Λ-free Horn theories, the induced hierarchies essentially coincide
with the concept lattices of Formal Concept Analysis. In Section 4,
we apply the framework to the induction of classifications from lin-
guistic data. We discuss the effects of varying the underlying the-
ory class. Moreover, we consider the selective addition of disjunctive
rules. One possible application is the construction of classification
trees.

2 CLASSIFICATION AS OBSERVATIONAL
THEORY

2.1 Observational theories

Linguistic classifications of the sort presented in Section 1 can be re-
garded as first-order theories consisting of universally quantified con-
ditionals of the form∀x(φx → ψx), henceforth written asφ ⊆ ψ.
The one-place predicatesφ andψ are inductively built by∧ and∨
from members of a setΣ of primitive predicates plus two predicates
V andΛ, which stand respectively forλx(x = x) andλx(x 6= x).4

Following [20] we call predicates constructed that wayobserva-
tional.

Let T[Σ] be the(free) term algebraof observational predicates
overΣ. Observational statementsoverΣ are statements of the form
φ ⊆ ψ, with φ, ψ ∈ T[Σ]; observational theoriesare sets of such

3 See [2] for an early approach of this kind, which employssimple inheritance
theories with binary exclusions.

4 Theλ-notation indicates predicate abstraction;φ ∧ ψ stands forλx(φx ∧
ψx), etc.



statements. In the following, ‘classification’ and ‘observational the-
ory’ are used interchangeably. Notice that the lack of an explicit
negation operator does not restrict the logical expressivity of obser-
vational statements. The reason is that an arbitrary universally quan-
tified monadic predicate built by conjunction, disjunction, negation,
and conditional from primitive predicates has a conjunctive normal
form and is thus equivalent to a conjunction of observational state-
ments.5 For instance,φ ⊆ ¬ψ is equivalent toφ ∧ ψ ⊆ Λ and
φ ∧ ¬ψ ⊆ χ is equivalent toφ ⊆ ψ ∨ χ.

A Horn statementover Σ is an observational statementφ ⊆ ψ,
whereφ andψ are free of disjunctions. In caseφ andψ belong toΣ,
we speak of asimple inheritance statement. Statements of the form
φ ⊆ Λ are referred to asexclusion statements. A Horn theoryis an
observational theory consisting solely of Horn statements. Similarly
we speak ofsimple inheritance theories, etc.

2.2 Interpretations and models

Interpretations and models of observational theories are defined as
usual in standard (first-order) predicate logic: a (set-valued)interpre-
tationof Σ consists of auniverseU and aninterpretation functionM
from Σ to ℘(U). The interpretationM can be inductively extended
to T[Σ] byM(V) = U ,M(Λ) = ?,

M(φ ∧ ψ) = M(φ) ∩M(ψ), M(φ ∨ ψ) = M(φ) ∪M(ψ).

An interpretationM modelsa statementφ ⊆ ψ iff M(φ) ⊆ M(ψ).
A modelof an observational theoryΓ overΣ is an interpretation that
models each of the statements ofΓ. An interpretation corresponds to
a satisfaction relation�M from U to Σ, which can be extended to
one fromU to T[Σ] such thatx � φ iff x ∈M(φ). The setM(φ) is
called theextentof φ.

Consider an interpretation ofΣ with universeU and satisfaction
relation�. Given two membersx andy of U we say thatx is spe-
cialized byy (notation:x v y) if y satisfies every member ofΣ that
is satisfied byx. It follows by term induction that

x v y iff ∀φ ∈ T[Σ] (x � φ→ y � φ). (1)

If the specialization preorderv is antisymmetric and thus a partial
ordering, we say that the interpretation satisfiesidentity of indis-
cernibles. (For the sake of the conventions of Formal Concept Anal-
ysis, more special elements will be graphically depictedbelow less
special ones.)

2.3 The canonical universe

There is a standard way to associate with each observational theory
Γ overΣ acanonical modelM(Γ) of Γ. Its universeC(Γ) consists of
theΓ-closed, consistent subsetsof Σ, which are specified as follows:
for eachX ⊆ Σ andp ∈ Σ defineX � p iff p ∈ X; extend�
inductively toT[Σ], i.e.X � V always,X � Λ never,X � φ∧ψ iff
X � φ andX � ψ, andX � φ ∨ ψ iff X � φ orX � ψ. Now, let
C(Γ) be the set of allX such that for every statementφ ⊆ ψ of Γ,
if X � φ thenX � ψ.6 Specialization onC(Γ) is set inclusion and
hence a partial order, which is easily seen to be directed complete.

5 Essentially the same observation is made in [5].
6 Alternatively, one can take the set ofΓ-models with values in2 = {0, 1},

where2-valued interpretations and models are defined as in standard propo-
sitional logic: a2-valued interpretationv of Σ is a model ofΓ iff v(ϕ) ≤
v(ψ) for every statementϕ ⊆ ψ of Γ.

For each interpretationM of Σ with universeU let εM be the
function fromU to℘(Σ) such that

εM (x) = {p ∈ Σ | x �M p}. (2)

By definition of specialization,x v y iff εM (x) ⊆ εM (y). So
εM is an order embedding ofU into ℘(Σ) if M satisfies identity of
indiscernibles. Moreover, it follows by term induction that

x �M φ iff εM (x) � φ. (3)

Consequently, ifM is a model of an observational theoryΓ then
εM is a homomorphism of models fromM to M(Γ). The canoni-
cal model is thus the “largest”Γ-model satisfying identity of indis-
cernibles in the sense that every other such modelM is embedded in
M(Γ) via εM .

Depending on the class ofΓ, the canonical universeC(Γ) can be
characterized as a subset system as follows:7

Theorem 1 If an observational theoryΓ over Σ belongs to one of
the classes listed on the left of Table 1 then its canonical universe
C(Γ) is closed with respect to the properties listed in the same row
on the right. Conversely, if a subset systemU over Σ has closure
properties that are listed in the right column thenU is the canoni-
cal universe of an observational theory overΣ of the corresponding
class on the left.

Class ofΓ Closure properties ofC(Γ)

observational local membership

Horn nonempty intersection+ directed union

Λ-free Horn intersection+ directed union

simple inheritance intersection+ union

exclusion subsets+ finitely bounded union

simple inheritance
+ exclusion

nonempty intersection
+ finitely bounded union

Table 1. Relationship betweenΓ andC(Γ)

The reader is referred to [13] for a proof, where in addition an
order-theoretic characterization can be found. (For instance, the sub-
set systems that are closed with respect to nonempty intersection and
directed union, also known asinductive intersection systems, corre-
spond to thebounded-complete algebraic dcpos, or Scott domains,
for short.)

Given classC of observational statements overΣ (e.g. the class of
Horn statements) and a subset systemU overΣ, let ΓC(U) be the set
of all C-statementsφ ⊆ ψ such that

∀X ∈ U (X � φ→ X � ψ).

7 A subset systemU overΣ is locally closedif it contains every subsetX of
Σ which is locally a member ofU in the sense that for every finite subsetF
of Σ there is a memberY of U such thatX ∩F = Y ∩F . Directed union
is shortunion of (upwards) directed subsets, and finitely bounded union
meansunion of subsets whose every finite subset has an upper bound. No-
tice that everyfinite subset system is locally closed and closed with respect
to directed union.



We callΓC(U) thecanonicalC-theoryassociated withU . The theory
ΓC(U) is of course highly redundant since it is closed with respect
to entailment. (See [5] for the definition of anonredundant basisof
a theory.)

Let us say thatU is C-definableif U is the canonical universe of
a C-theory (which is the case, for instance, ifC is the class of Horn
statements andU is an inductive intersection system). It is easy to see
thatU is C-definable just in caseU = C(ΓC(U)). In general,ΓC(U)
is the leastC-definable subset system containingU . Consequently,
by Theorem 1:

Theorem 2 The canonical universe ofΓC(U) is the closure ofU
with respect to the properties of Table 1 that correspond to classC.

3 FORMAL CONCEPT ANALYSIS

3.1 Complete theories of formal contexts

Consider the situation that a certain setU of objects is classified with
respect to a setΣ of properties (or attributes). In other words, we
are given a satisfaction relation� from U to Σ, i.e. an interpretation
functionM from Σ to ℘(U). In the terminology ofFormal Concept
Analysis([7]), the triple〈U,Σ,�〉 is called aformal context.8

Given a formal context one can ask for a theory that explains the
data. To make this precise, we need to fix the type of theory we are
interested in. For example, one can ask for a simple inheritance the-
ory with or without exclusions, a Horn theory with or withoutΛ, or
an observational theory in general.

Let C be a class of observational statements overΣ. We call aC-
theoryΓ a completeC-theory ofM if, first, every statement ofΓ is
true with respect toM , i.e. if M is a model ofΓ, and, second, if
Γ entails everyC-statement that holds inM , that is, if for all (φ ⊆
ψ) ∈ C,

if M(φ) ⊆M(ψ) then Γ ` φ ⊆ ψ.

It is an immediate consequence of definitions that a completeC-
theory ofM is unique up to logical equivalence. Moreover, there
is a trivial way to get a complete theory: take the setΓC,M of all
C-statements that are true with respect toM :

ΓC,M = {(φ ⊆ ψ) ∈ C |M(φ) ⊆M(ψ)}.
Let us explore more closely the relation between a given for-

mal context and the canonical universe of its completeC-theory. As
shown in Section 2, a formal context, i.e. a satisfaction relation�

from U to Σ, determines a specialization relationv on U ; see (1).
In addition, the (pre)order-preserving functionεM from U to ℘(Σ)
defined by (2) takesx ∈ U to {p ∈ Σ |x � p}. LetUM be the image
{εM (x) | x ∈ U} of εM . In generalεM is not one-to-one because
there is no guarantee ofidentity of indiscernibles, i.e. different ele-
ments ofU may satisfy exactly the same members ofΣ. We have
UM ' U/∼ instead, withx ∼ y iff εM (x) = εM (y).

Now notice that the canonicalC-theoryΓC(UM ) associated with
UM coincides withΓC,M ; for by (3), εM (x) � φ iff x � φ. So
we can apply Theorem 2 to characterize the canonical universe of a
completeC-theory ofM . For instance, ifΓ is a complete Horn the-
ory ofM thenC(Γ) is the closure ofUM with respect to nonempty
intersection and directed union; similarly, ifΓ is a complete simple
inheritance theory ofM thenC(Γ) is the closure ofUM with respect
to intersection and union.

8 Beware,〈U,Σ,�〉 is called aclassificationin [1].

Example:LetΣ be{a, b, c, d, e}. SupposeU consists of the seven
elementsx1, x2, . . . , x7 which are classified according to the table
of Figure 2. In addition, the figure shows the specialization order on

a b c d e

x1 x x x
x2 x
x3 x
x4 x x x x
x5 x x
x6 x x x x
x7 x x x

x2

{a}
x3

{b}

x5

{a, c}

x7

{a, c, d} x4, x6

{a, b, c, d}
x1

{a, b, e}

Figure 2. Classification table and induced specialization order

U/∼ induced by the given formal context (wherex4 andx6 are in-
discernible, i.e.x4∼x6), as well as the corresponding subset system
UM overΣ. Figure 3 provides an overview of the canonical universes
of several completeC-theories ofM , with varyingC. At the top of
the figure there is the canonical universe of a complete simple inheri-
tance theory ofM ; it is the closure ofUM with respect to intersection
and union. A (nonredundant) complete simple inheritance theory of
M is given by the statementsd ⊆ c, c ⊆ a, e ⊆ a, ande ⊆ b. The
diagram below the top on the left depicts the closure ofUM with re-
spect to intersection of nonempty subsets and union of bounded sub-
sets. It is the canonical universe of the extension of the above simple
inheritance theory by the exclusion statementc ∧ e ⊆ Λ. Addition
of the Horn statementb ∧ c ⊆ d further weakens the closure proper-
ties of the associated canonical universe. If the statementb∧c ⊆ d is
added to the simple inheritance theory before the exclusion statement
c∧e ⊆ Λ, the resulting effect on the respective canonical universes is
as depicted by the right branch of Figure 3. Finally, adding the state-
ments V⊆ a∨ b anda∧ b ⊆ c∨ e leads to a complete observational
theory ofM , whose canonical universe consequently isUM .

From the viewpoint ofmachine learning(e.g. [11]), the problem
of inducing theories from formal contexts can be characterized as fol-
lows: TheC-theories consitute thehypothesis spaceH of the learning
problem, whereas theversion spacewith respect toH andM con-
sists of allC-theories with modelM . The commitment to statement
typeC determines theinductive bias: one can fit the data only as well
asC permits. On the other hand, ifC is too expressive,overfitting
can occur: the induced theory explains the given data perfectly but
does not allow generalizations. See Section 4.2 for a more thorough
discussion of this problem.
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Figure 3. Canonical universes of completeC-theories of formal context

3.2 Concept lattices

Formal Concept Analysis associates with each formal context a
(complete) lattice of formal concepts. Aformal conceptof a con-
text 〈U,Σ,�〉 is a pair〈V,X〉 consisting of a setV ⊆ U of objects
(theextent) and a setX ⊆ Σ of attributes (theintent) such thatX is
the set of those attributes that are shared by all objects ofV , whereas
V consists of all objects that have all attributes ofX. So〈V,X〉 is a
formal concept just in caseV I = X andXJ = V , where

V I = {p ∈ Σ | ∀x ∈ V (x � p)} =
T{εM (x) | x ∈ V },

XJ = {x ∈ U | ∀p ∈ X(x � p)} =
T{M(p) | p ∈ X},

andM is the interpretation function associated with the formal con-
text. Clearly〈(V I)J, V I〉 is a formal concept for eachV ⊆ U .
Furthermore, every formal concept of the context is of the form
〈(V I)J, V I〉. The set of all formal concepts is partially ordered
by thesubconcept-superconcept-relation≤, which is defined as fol-
lows:

〈V1,X1〉 ≤ 〈V2,X2〉 iff V1 ⊆ V2 iff X1 ⊇ X2.

The set of formal concepts ordered by≤ forms a complete lattice,
the so-calledconcept latticeof the formal context.

By definition, the set{V I | V ⊆ U} of intents is the closure of
UM = {εM (x) | x ∈ U} with respect to intersection. Since in the
finite case, the set of intents is trivially closed with respect to directed
union, it follows by Theorem 2:

Theorem 3 The set of intents determined by a finite formal context is
precisely the canonical universe of the completeΛ-free Horn theory
of that context.

The following diagram summarizes the correspondence between
(finite) concept lattices and canonical universes ofΛ-free Horn theo-
ries (see also [5], [6]).

canonical universe concept lattice

ΓΛ-free Horn,M set of attribute implications
∼=

∼=

4 INDUCTION OF HIERARCHICAL
CLASSIFICATIONS FROM LINGUISTIC
DATA

4.1 Applying Formal Concept Analysis to the
induction of monotonic linguistic hierarchies

Modern linguistic theories regard linguistic knowledge to a large part
as being lexical (e.g. HPSG [15], [18]). The lexicon is hierarchically
structured in order to capture generalizations over linguistic enti-
ties. In general, these lexical hierarchies are constructed manually
by linguists using linguistic knowledge and theory-driven hypothe-
ses. However, in order to be independent of any specific theory, most
of the linguistic databases contain purely unstructured data. For ex-
ample, the lexical database CELEX, compiled by the Dutch Center
for Lexical Information, consists of three large electronic databases
and provides users with detailed English, German and Dutch lexical
data. The German database, which serves us as a test database, holds
51.728 lemmas with 365.530 corresponding word forms.



The automatic induction of linguistic hierarchies is desirable both
from a practical and a theoretical point of view. On the one hand, it
makes the processing of large amounts of data possible and provides
fast results. On the other hand, it is of theoretical interest to com-
pare an automatically induced classification with existing linguistic
descriptions, in order to reveal the linguistic assumptions made by
the human experts. Furthermore, an automatically induced hierarchy
can guide the linguist in analyzing new linguistic data. To this end,
the induced hierarchy should exhibit as much of the implicitly given
information as possible, and the original flat input data should al-
ways be reconstructible from the induced hierarchy. Formal Concept
Analysis satisfies these demands. It has already been applied to the
following linguistic areas: meronymy ([17]), WordNet ([16]), seman-
tics of speech-act-verbs ([9]), and verb paradigms ([8]).

Table 2 shows a many-valued formal context based on CELEX,
that models a part of the German nominal inflection. It contains
the gender information and the inflectional paradigms of eight Ger-
man nouns (Herr ‘mister’, Name‘name’,Staat‘state’,Hemd‘shirt’,
Farbe‘color’, Bett‘bed’, Onkel‘uncle’, Ufer ‘bank’/ ‘shore’).9 If the
features of this context are scaled with respect to the nominal scale
(see [7]), one ends up with a one-valued context consisting of eight
objects and 19 attributes. This will be our example context in the
remaining part of the paper.
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Herr masc * * n * n * n * n * n * n * n

Name masc * * ns * n * n * n * n * n * n

Staat masc * * s * * * n * n * n * n

Hemd neut * * s * * * n * n * n * n

Farbe fem * * * * * n * n * n * n

Bett neut * * s * * * n * n * n * n

Onkel masc * * s * * * * * n *

Ufer neut * * s * * * * * n *

Table 2. Example data: derivational paradigms of eight German nouns

Figure 4 shows the concept lattice which corresponds to our exam-
ple context. As usual, only the attribute and the object concepts are
labeled.10 The concept lattice represents a monotonic multiple inher-
itance hierarchy, where a node inherits all the attributes labeled to its
supernodes.11 Notice that conflicting attributes cannot be inherited,
since the hierarchy is constructed on the base of the subset relation
of concept intents.

Let us focus more closely on the four unlabeled nodes of the ex-
ample concept lattice.12 In an inheritance hierarchy nodes have es-

9 ‘*’ represents the root of the derived word form. For example, if the feature
“sing dat” has the value “*n” at the object “Name”, that means that the
singular dative form ofNameis Namen. As usual, the unstressed vowel
(the so-calledschwa) is disregarded since its occurrence is determined by
phonological rules.

10 Theattribute conceptassociated with an attributep is the greatest concept
whose intent containsp and theobject conceptof an objectx is the smallest
concept whose extent containsx.

11 An inheritance hierarchy is said to be multiple if it is not excluded that a
node has more than one supernode from which it inherits.

12 We will disregard the unlabeled bottom node.

sentially two roles: first, they can introduce new information, which
will be inherited by subnodes and second, they “collect” information
from their supernodes and transmit it “bundled up” to their subnodes.
Unlabeled nodes are nodes which only perform information bundling
and not information introduction. Nodes that do not bundle up infor-
mation are necessarily labeled. (They are∧-irreducible in that they
have less than two direct upper neighbors.) Altering the hierarchy by
varying the underlying theory which models the data of the context
changes the proportion between the information introducing and the
information bundling nodes.

4.2 Extensions and restrictions of concept lattices

Among the different hierarchical representations of a given data set
there is none which is optimal in every respect. Rather, the question
is to find the most appropriate representation depending on the task
for which the hierarchy is built. Two criteria must be met by any
reasonable representation: it must be complete and consistent with
respect to the data. Furthermore, a good representation is maximally
informative, maximally compact, and avoids redundancies by captur-
ing generalizations. Unfortunately, it is not possible to construct an
inheritance hierarchy which is optimal with respect to each of these
criteria.

What does it mean to say that an hierarchical network is maxi-
mally informative? In principle, every hierarchy which is consistent
and complete with respect to the data is equally informative in the
sense that the original context can be reconstructed from the hierar-
chy. But consider the hierarchy in Figure 5, which corresponds to the
complete observational theory of the example context: Since two of
the objects in the example are either indiscernible or incommensu-
rable, the hierarchy isflat; only the fact that indiscernible objects are
merged discriminates this representation from the one in Table 2. For
the observer the flat hierarchy is less informative than the concept
lattice, although from the viewpoint of the underlying theories, the
Horn theory is a subtheory of the observational theory and therefore
less informative. Since we are interested in the induction of hierar-
chical representations, we record that hierarchies differ with regard
to the amount of information they exhibit explicitly. If the hierarchy
is designed to be viewed by human beings it should maximize this
amount of information.

The compactness of a network can be measured in several re-
spects, but in what follows we will only look at the number of nodes.
The compactness criterion clearly favors the network of the observa-
tional theory.

A good representation avoids redundancy by capturing general-
izations. In the flat hierarchy determined by the complete observa-
tional theory (see Figure 5) no generalizations are captured and there-
fore, several attributes have to be stated more than once (e.g. “gen-
der:masc”). In other words, the complete observational theory leads
to “overfitting”. In the concept lattice (see Figure 4) all generaliza-
tions are captured and every attribute and every object occurs exactly
once; such a representation is said to be free of redundancy.

Is there any representation that has this desirable property but is
more compact than the concept lattice? It follows from Section 2.3
that such a representation is the canonical universe of an extension of
a completeΛ-free Horn theory describing the concept lattice by dis-
junctive rules that are consistent with respect to the data. Recalling
the two different roles of nodes in inheritance hierarchies we can dis-
pense with the four nodes which only bundle up information. This re-
sults in the inheritance network in Figure 6, which is the partially or-
dered set of the attribute and object concepts (AOC-poset), bounded



Ufer Onkel

plur nom: *
plur gen: *
plur acc: *

plur nom: *_n
plur gen: *_n
plur acc: *_nsing gen: *_s

gender: fem
sing gen: *

Herr Name

Hemd
Bett

Farbe

Staat

gender: masc

sing dat: *
sing acc: *

 sing dat: *_n
 sing acc: *_n

sing gen: *_nssing gen: *_n

sing nom: *
plur dat: *_n

gender: neut

Figure 4. Concept lattice corresponding to Table 2
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Figure 5. Generic universe of the complete observational theory



by a top and a bottom node. (Notice that in the case of a reduced
context the AOC-poset consists exactly of the∧-irreducible and the
∨-irreducible nodes of the concept lattice.) The theory describing the
AOC-poset consists of all the rules from the Horn theory correspond-
ing to the concept lattice and an additional disjunctive rule for each
concept which is neither an object nor an attribute concept. These
rules are obtained in the following way: For each concept node in
question, the conjunction of its intent forms the premise, and the dis-
junction of the intents of its subconcepts without the intent of the
concept itself forms the conclusion of the new rule. In our example,
one has to add the following rules in order to get the AOC-poset:

sing gen:*s ∧ plur nom: * n

∧ sing dat: * ⊆ gender: neut∨ gender: masc

sing gen:*s ∧ gender: masc ⊆ plur nom:* ∨ plur nom:* n

sing dat:* ∧ plur nom: * n ⊆ gender: fem∨ sing gen: *s

plur nom:* n ∧ gender: masc ⊆ sing dat:* n∨ sing gen: *s

Compared to the concept lattice, the AOC-poset is more compact
and also free of redundancy. But it is not as informative as the concept
lattice, since the information about common attributes is not captured
in single nodes anymore. In the worst case, the AOC-poset has only
four levels: the top and the bottom nodes, the level of the attribute
nodes, and the level of the object nodes. This happens if, first, all
objects intents and, second, all attribute extents are pairwise incom-
parable with respect to set inclusion. Nevertheless, the AOC-poset
is more informative than the complete observational theory since it
simplifies the access to the information to which objects an attribute
applies and it shows the hierarchical relations between the attributes.

The number of nodes in an AOC-poset is bounded by the sum of
the number of attributes and the number of objects plus two. In realis-
tic data sets the difference in compactness between AOC-posets and
concept lattices can be dramatic. For instance, the number of nodes
in the concept lattice capturing the derivational information of Ger-
man lemmas contained in the lexical database CELEX is greater than
72.000, whereas the number of nodes in the corresponding AOC-
poset is less than 4.000. (The underlying formal context consists of
9.567 objects and 2.032 attributes.) Hence, switching to the AOC-
poset reduces the memory requirements. Moreover, since the AOC-
poset is just the partial order of the attribute and object concepts,
there is an efficient construction algorithm. To summarize, compared
to concept lattices, AOC-posets provide a very simple method to in-
duce redundancy-free inheritance hierarchies from huge databases.
Inference tasks, however, are better supported by concept lattices,
due to the explicit representation of shared attributes.

Having discussed the case of adding rules to a complete Horn the-
ory, it remains to consider the omission of rules. Switching to the
complete simple inheritance theory without exclusions seems to be
overdone, because for the example context of Table 2 the result-
ing lattice has 78 concepts. Since the attributes of the example are
feature-value pairs, where the values of each feature are incompat-
ible, it makes sense to take the complete simple inheritance theory
with exclusions instead. The corresponding hierarchy has 21 ele-
ments, witness Figure 7, and is hence less compact than the concept
lattice. The simple inheritance theory is weaker than the one describ-
ing the AOC-poset or the concept lattice; it is thus more likely that
a new object can be inserted without serious changes to the structure
of the lattice.

4.3 Classification trees

All hierarchical representations presented so far make use of multiple
inheritance, whereas in traditional linguistics, hierarchical classifica-
tions are usually presented in form of taxonomic trees. In modern
linguistic theories, multiple inheritance is included but in general
restricted to special cases like multi-dimensional inheritance (e.g.
HPSG, [15]). Even in these approaches, tree-like hierarchies play a
prominent role. Their characteristic property is that the subclassifica-
tion at each node is based on the different values of a single feature.

Let us briefly indicate by example how to “cut out” classification
trees of this type from concept lattices by adding disjunctive rules.
Figure 8 shows such a tree for the data of Table 2. It first classifies
the nouns with regard to their gender, which defines the full inflec-
tional paradigm of the feminine nouns. The neuter nouns are then
further classified according to their plural marking strategy, while
the masculine nouns are first specified with respect to their singu-
lar accusative forms and then their plural and their singular genitive
forms respectively. The tree of Figure 8 is the canonical universe of
the theory consisting of (a) the conjunctive statements corresponding
to the concept lattice, (b) exclusionary statements which ensure the
incompatibility of the feature values, and (c) the following disjunc-
tive rules:

sing acc:* ⊆ gender: fem∨ gender: masc∨ gender: neut

plur nom:* n ⊆ sing acc:*∨ sing acc:*n

Notice that the conclusions of these rules specify the selectable val-
ues for a single feature.

Of course, the form of the classification tree is not determined by
the given formal context. Figure 9 shows a different classification
tree, where the sorting decisions are done in another order. It has
one node less than the first tree, since, after choosing the singular
accusative form of the masculine nouns, there are only two nouns left
which have to be further distinguished by fixing their plural forms. In
order to get this tree, one can employ the following disjunctive rules:

sing acc:* ⊆ gender: fem∨ gender: masc∨ gender: neut

plur nom:* n ⊆ sing gen:*∨ sing gen:*s∨
sing gen:*n∨ sing gen:*ns

The indeterminateness of classification trees is the main argument
against them. But one should keep in mind that trees are much easier
to read than multiple inheritance networks, because they do not have
crossing lines. Therefore it would be interesting to have a system
which allows to switch between different classification trees and the
concept lattice or the AOC-poset.

Finally, it has to be emphasized that we do not propose to construct
decision trees from concept lattices by adding rules to the underlying
theory, because for inducing decision trees a lot of efficient tools are
available. The purpose of presenting classification trees is solely to
show that besides AOC-posets trees can also be characterized as an
extension of concept lattices.

5 OUTLOOK

In addition to purely monotonic inheritance hierarchies, nonmono-
tonic approaches are becoming more and more important in linguis-
tic theories (e.g. [4], [3]). In [14] one finds a first discussion of the
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potentials of applying Formal Concept Analysis to the induction of
regularities, subregularities, and exceptions in order to obtain reason-
able nonmonotonic inheritance hierarchies. This is a topic of current
research.

Another possible application of the presented approach is to al-
low disjunctive rules in attribute exploration tasks. As discussed in
Section 4.2, the problem is to avoid accepting too many disjunctive
rules, since otherwise, in the case of incommensurable objects the
exploration would always end in a flat hierarchy like that of Figure
5. One way to prevent this could be to introduce two steps: first, the
standard attribute exploration is performed and second, each concept
which is not yet an attribute or an object concept is tested to deter-
mine whether there is any object in the universe to which exactly the
attributes of its intent apply. If so, the object is added to the context
and if not, a disjunctive rule is added which excludes the concept
from the canonical universe. In an exploration tool the concept could
be tested by presenting the corresponding disjunctive rule (see Sec-
tion 4.2) and asking if there is any known counter example.

Furthermore it would be interesting to explore possible ways to
automatically shift from one theory to another, based on parameters
like compactness monitored during incremental construction of the
inheritance hierarchy.
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