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Linear Coding of Non-linear Hierarchies: 1

Revitalization of an Ancient Classification 2

Method 3

Wiebke Petersen 4

Abstract The article treats the problem of forcing entities into a linear order which 5

could be more naturally organized in a non-linear hierarchy (e.g., books in a library, 6

products in a warehouse or store, . . . ). The key idea is to apply a technique for the 7

linear coding of non-linear hierarchies which has been developed by the ancient 8

grammarian Pān. ini for the concise representation of sound classes. The article 9

introduces briefly Pān. ini’s technique and discusses a general theorem stating under 10

which condition his technique can be applied. 11

Keywords Classification � Hierarchy � Indian grammar theory � Pān. ini. 12

1 Introduction 13

1.1 Why Are Linear Codings Desirable? 14

There are several situations in daily life where one is confronted with the problem 15

of being forced to order things linearly although they could be organized in a non- 16

linear hierarchy more naturally. For example, due to the one-dimensional nature of 17

book shelves, books in a library or a bookstore have to be placed next to each other 18

in a linear order. One of the simplest solutions to this problem would be to order 19

the books strictly with respect to their authors’ names and to ignore their thematic 20

relationships. Such an arrangement forces a user of a library, who is usually inter- 21

ested in literature on a special subject, to cover long distances while collecting the 22

required books. Therefore, librarians normally choose a mixed strategy: books are 23

classified according to their thematic subject and within each class they are ordered 24

alphabetically with respect to their authors’ names. International standards for sub- 25

ject classification usually claim that the classification has a tree structures, i.e., each 26

thematic field is partitioned into disjoint subfields which are further subdivided into 27
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disjoint sub-subfields and so forth (e.g., UDC: “Universal Decimal Classification”1). 28

However, there will always be books which do not fit neatly into one single most 29

specific class. 30

Similar problems occur in many types of stores, too: food or toys are, like books, 31

commonly presented on shelves, and clothes are hanging next to each other on racks. 32

The question of whether honey should be placed in the breakfast or in the baking 33

department, or whether clothes should be arranged by their color, by the season in 34

which they are typically worn or their type (trousers, jackets, . . . ) is comparable to 35

the book-placing problem. In warehouses it is beneficial to place the products such 36

that those which are often ordered together are within striking distance in order 37

to minimize the length of the course which has to be covered while carrying out 38

an order. In this setting, the thematic classification becomes secondary since the 39

“classes” are dynamically defined by the consumers’ orders. 40

1.2 Pān. ini’s Śivasūtra-Technique 41

The problem of linearly ordering entities which bear a complex non-linear relation- 42

ship to each other is old and predates common product organizing problems. In 43

spoken language everything has to be expressed linearly since language is linear by 44

nature. In ancient India, people were very aware of this problem since their culture 45

based on an oral tradition where script was mainly reserved for profane tasks like 46

trading or administration. Since any text which was considered worth to be pre- 47

served was taught via endless recitations, keeping texts as concise as possible was 48

desirable. The aspiration after conciseness is especially noticeable in grammar, for 49

which many techniques to improve the compactness of the grammatical descrip- 50

tions were invented. Grammar was regarded as the śāstrānām. śāstram “science of 51

sciences” since it aimed at the preservation of the Vedas, the holy scriptures, of 52

which the oldest parts date around 1200 BC (cf. Staal, 1982). 53

The culmination point of ancient Indian grammar was Pān. ini’s Sanskrit gram- 54

mar (Böhtlingk, 1887) which dates circa 350 BC. Its main part consists of about 55

4,000 rules, many of them phonological rules which describe the complex system of 56

Sandhi. Sandhi processes are regular phonological processes which are triggered by 57

the junction of two words or morphemes;2 they are very common in Sanskrit. Phono- 58

logical rules are typically of the form “sounds of class A are replaced by sounds of 59

class B if they are preceded by sounds of class C and followed by sounds of class 60

D”.3 Since it is not economical to enumerate for each single rule all sounds which 61

1 http://www.udcc.org/, http://www.udc-online.com/.
2 E.g., the regular alternation between a and an of the indefinite article in English is a Sandhi
phenomenon.
3 In modern phonology such a rule is denoted as

A! B=C D : (1)
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a|i||u||�	V|| r||l||	 e|a|eV|||�	 ee|a|�V||||c	V|| �|yV|||vV|||�|�	 �||�	V|| nV|||mV|||�||�V|||nV|||m	V|| �V|||�V|||n	V|| (I)

|�V|||�|�V|||�	V|| |jV|||bV|||gV|||�||�|s	V|| !V|||"||#||$||%V||||cV|||�|tV|||v	V|| ||pV|||y	V|| sV|||�V|||sV|||�	 �|�	

a.i.un. r. .l.k e.oṅ ai.auc hayavarat. lan. ñamaṅan. anam jhabhañ (II)
ghad. hadhas. jabagad. adaś khaphachat.hathacat.atav kapay śas.asar hal

a i uM1 r. l.M2 e oM3 ai auM4 h y v rM5 lM6 ñ m ṅ n. nM7 jh bhM8 (III)
gh d. h dhM9 j b g d. dM10 kh ph ch t.h th c t. tM11 k pM12 ś s. sM13 hM14

Fig. 1 Pān. ini’s Śivasūtras (I: Devanāgarı̄ script; II: Latin transcription; III: Analysis – the syllable-
building vowels are left out and the meta-linguistical consonants marking the end of a sūtra are
replaced by neutral markers Mi )

are involved in it, an appropriate phonological description must include a method to 62

denote sound classes. The method should be such that addressing a natural phono- 63

logical class becomes easier than addressing an arbitrary set of sounds. In modern 64

phonology one often chooses a set of binary phonetic features like Œ˙consonantal� 65

or Œ˙voiced� in order to define the relevant sound classes. This approach necessarily 66

involves the problem of choosing and naming features and the danger of defining 67

ad-hoc features. However, Pān. ini’s method of addressing the relevant sound classes 68

evades this problem. 69

The first 14 sūtras of Pān. ini’s Sanskrit grammar are called Śivasūtras and quoted 70

in Fig. 1. Each sūtra consists of a sequence of sounds ending in a consonant. This last 71

consonant of each sūtra is used meta-linguistically as a marker to indicate the end 72

of a sūtra. As the system behind the naming of the markers is unknown (cf. Misra, 73

1966), we have replaced them in Fig. 1 (III) by neutral markers M1 up to M14. 74

Together the Śivasūtras define a linear order on the sounds of Sanskrit. The order 75

is such that each class of sounds on which a phonological rule of Pān. ini’s grammar 76

operates forms an interval which ends immediately before a marker element. As a 77

result, Pān. ini could use pairs consisting of a sound and a marker element in order 78

to designate the sound classes in his grammar. Such a pair denotes the continuous 79

sequence of sounds in the interval between the sound and the marker. E.g., the pair 80

iM2 denotes the class fi, u, r., l.g. 81

The question whether Pān. ini arranged the sounds in the Śivasūtras in an optimal 82

way and especially whether the double occurrence of the sound h (in the 5th and in 83

the 14th sūtra) is necessary has been widely discussed (cf. Böhtlingk, 1887; Staal, 84

1962; Cardona, 1969; Kiparsky, 1991). In Petersen (2004) it could be proven that 85

Since Pān. ini’s grammar was designed for oral tradition, he could not make use of visual symbols
(like arrows, slashes, . . . ) to indicate the role of the sound classes in a rule. He takes case suf-
fixes instead which he uses meta-linguistically in order to mark the role a class plays in a rule. In
Pān. inian style rule (1) becomes

AC genitive; B C nominative; C C ablative; DC locative: (2)
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there is no shorter solution than the Śivasūtras to the problem of ordering the sounds 86

of Sanskrit in a linear, by markers interrupted list with as few repeated sounds as 87

possible such that each phonological class which is denoted by a sound-marker pair 88

in Pān. ini’s grammar can be represented by such a pair with respect to the list.4 This 89

shows that the double occurrence of h is not superfluous and that Pān. ini used a 90

minimal number of markers in the Śivasūtras. 91

2 Linear Coding of Non-linear Hierarchies: Generalizing 92

Pān. ini’s Śivasūtra-Technique 93

In Sect. 1.1 we have argued that there are several situations in which it is required to 94

force entities in a linear order although it would be more natural to organize them 95

in a non-linear hierarchy. The aim of the present section is to show that Pān. ini’s 96

Śivasūtra-technique, which has been introduced in Sect. 1.2, may offer a solution to 97

the mentioned problem in many situations. 98

2.1 S-Orders and S-Sortability: Formal Foundations 99

All ordering problems mentioned in Sect. 1.1 are based on a common problem: 100

Problem 1. Given a set of classes of entities (no matter on what aspects the classi- 101

fication is based) order the entities in a linear order such that each single class forms 102

a continuous interval with respect to that order. 103

Take for example the problem of ordering books in a library. It would be favor- 104

able to order the books linearly on the bookshelves such that all the books belonging 105

to one thematic subfield are placed next to each other on the shelves without having 106

to add additional copies of a book into the order. 107

Pān. ini solved Problem 1 with his Śivasūtras in a concrete case: The Śivasūtras 108

define a linear order on the set of sounds in Sanskrit (with one sound occurring 109

twice) in which each class of sounds required in his grammar forms a continuous 110

interval.5 In order to solve concrete instances of Problem 1, one can do with- 111

out Pān. ini’s special technique of interrupting the order by marker elements such 112

that each class interval ends immediately before a marker. In tribute to Pān. ini’s 113

Śivasūtras we call a linear order which solves an instance of Problem 1 a Śivasūtra- 114

order or short S-order. A set of classes is said to be S-sortable without duplications 115

4 Actually, the Śivasūtras are one of nearly 12,000,000 arrangements which are equal in length
(Petersen, 2008).
5 Actually, for the denotation of some sound classes Pān. ini used different techniques in his
grammar (for details see Petersen, 2008, 2009).
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if it forms a solvable instance of Problem 1, i.e., if a corresponding S-order exists. 116

Obviously, not every set of classes is S-sortable without duplications. For instance, 117

even the Śivasūtras do not define an S-order as they contain one sound twice. By 118

proving that the double occurrence of h is unavoidable it has been shown that no S- 119

order exists for the set of sound classes required by Pān. ini’s grammar (cf. Petersen, 120

2004). However, it should be clear that by a clever duplication of enough elements 121

each set of classes can be S-sorted. 122

The following definition summarizes formally the terminology which we will 123

use hereinafter in order to generalize and apply Pān. ini’s Śivasūtra-technique: 124

Definition 1. Given a base set A and a set of subsets ˆ with
S
ˆ D A, a linear 125

order < on A is called an S-order of .A; ˆ/ if and only if the elements of each set 126

� 2 ˆ form an interval in .A; </. 127

Furthermore, .A; ˆ/ is said to be S-sortable without duplications if and only if 128

there exists an S-order .A; </ of .A; ˆ/. 129

Two simple examples serve us through the rest of the paper as illustrations: 130

Example 1. Given the base set A D fa; b; c; d; e; f; g; h; ig and the set of classes 131

ˆ D ffd; eg; fa; bg; fb; c; d; f; g; h; ig; ff; ig; fc; d; e; f; g; h; ig; fg; hgg, .A; ˆ/ is 132

S-sortable without duplications and a 
 b 
 c 
 g 
 h 
 f 
 i 
 d 
 e is an 133

S-order of .A; ˆ/. 134

Example 2. Given the base set A D fa; b; c; d; e; f g and the set of classes ˆ D 135

ffd; eg; fa; bg; fb; c; d g; fb; c; d; f gg, .A; ˆ/ is not S-sortable without duplications. 136

Example 2 is not S-sortable without duplications since fb; c; d g 2 ˆ demands 137

that no element of Anfb; c; d g may stand between any two elements of fb; c; d g. 138

Furthermore, from fd; eg 2 ˆ and fa; bg 2 ˆ it follows that either a < b < c < 139

d < e or e < d < c < b < a is true. But this is impossible since it contradicts 140

fb; c; d; f g 2 ˆ. 141

In the following, we will show how an S-order for a set of classes which is S- 142

sortable without duplications can be constructed. Out of the construction process a 143

condition for S-sortability can be derived. This condition is such that it can also help 144

to identify those elements which must be duplicated in the case of a set of classes 145

which is not S-sortable without duplications. 146

2.2 Constructing S-Orders 147

In the case of a set of classes which is S-sortable without duplications its S-orders 148

can be read off from its enlarged concept lattice. The term concept lattice is taken 149

from Formal Concept Analysis (FCA), i.e., a mathematical theory for the analysis 150

of data (cf. Ganter, & Wille, 1999). We do not need to evolve the whole apparatus of 151

FCA; it is sufficient to illustrate what we understand by the concept lattice of a set 152
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e

d

c

i
f

h
g

b

a

fd; eg
fdg

fc; d; f; g; h; ig

ff; ig fg; hg

fbg

fa; bg

f g

fa; b; c; d; e; f; g; h; ig

fc; d; e; f; g; h; ig fb; c; d; f; g; h; ig

Fig. 2 Concept lattice of .A; ˆ/ from Example 1

Fig. 3 Concept lattice of
.A; ˆ/ from Example 2 d

c

b

e f a

of classes by an example: Given the base set A and the set of classes ˆ from Exam- 153

ple 1, the concept lattice of .A; ˆ/ is given in Fig. 2. It is constructed as follows: All 154

elements ofˆ and all possible intersections of elements ofˆ are ordered by the set- 155

inclusion relation such that subsets are placed above their supersets. Formally, Fig. 2 156

shows the Hasse-diagram of the ordered set .A[ f� j� D T‰ with ‰ � ˆg;�/.6 157

In Fig. 2, you find below each node its corresponding set written. However, it 158

is not necessary to label each node by its corresponding set since it is sufficient to 159

write each element of the base set A to that node which corresponds to the smallest 160

set which contains the element. The result of this more economical labeling method 161

is shown in Fig. 2 by the labels above the nodes. The set corresponding to a node 162

can be regained from the sparing labels by collecting all labels attached to nodes 163

which can be reached by moving upwards in the graph. Hence, from now on, solely 164

the sparing labels will be shown in figures of concept lattices like in Fig. 3 which 165

shows the concept lattice for Example 2. 166

Although it would be possible to read off the S-orders for Example 1 from the 167

concept lattice in Fig. 2 (cf. Petersen, 2004, 2008), it is easier to switch to the con- 168

cept lattice of the enlarged set of classes. Enlarging the set of classes means adding 169

each element of the base set as a singleton set to the set of classes, e.g., in the case of 170

6 The Hasse-diagram of a partially ordered set is the directed graph whose vertices are the elements
of the set and whose edges correspond to the upper neighbor relation determined by the partial
order.
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e

d
c i f h g

b

a

Fig. 4 Enlarged concept lattice for Example 1

Example 1 the set of classes has to be enlarged by the classes fag, fbg, fcg, . . . , fig. 171

The enlarged concept lattice corresponding to Example 1 is shown in Fig. 4. 172

The following theorem states the connection between S-orders and concept 173

lattices of enlarged sets of classes: 174

Theorem 1. A set of classes .A; ˆ/ is S-sortable without duplications if and only if 175

a plane drawing of the Hasse-diagram of the concept lattice of the enlarged set of 176

classes .A; Q̂ / exists ( Q̂ D ˆ [ ffag j a 2 Ag).7 177

The full proof of this theorem is given in Petersen (2009) and sketched in 178

Petersen (2008). It follows immediately from the definition of our concept lattices 179

that whenever the Hasse-diagram of an enlarged concept lattice can be drawn with- 180

out intersecting edges then an S-order without duplications exists: Concept lattices 181

order sets by set inclusion; this ensures that the labels belonging to the elements of 182

one class out of a set of classes form an interval in the sequence defined by the left- 183

to-right order of the labels in a plane drawing of the Hasse-diagram of the enlarged 184

concept lattice. It follows that this left-to-right defines an S-order without duplica- 185

tions of the set of classes. For example, the plane Hasse-diagram in Fig. 4 defines 186

the S-order e < d < c < i < f < h < g < b < a for the set of classes from 187

Example 1. 188

The proof of the reversed statement, i.e., that the existence of an S-order implies 189

the existence of a plane drawing of the Hasse-diagram, was first given in Petersen 190

(2004). The proof involves an explicit construction of a plane drawing of the Hasse- 191

diagram of the enlarged concept lattice for any S-order of any S-sortable set of 192

classes. The construction guarantees that the left-to-right order of the labels equals 193

the original S-order. 194

7 A drawing of a Hasse-diagram is said to be plane if it shows no intersecting edges.
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e

d
c i f h g

b

a

Fig. 5 Illustration of the distinct plane drawings of the enlarged concept lattice for Example 1
resulting in different S-orders

However, the construction method does not deterministically result in one S- 195

order, since usually several plane drawings exist for the concept lattice of an 196

enlarged set of classes. In fact, the proof of the theorem above implies that for every 197

S-order there exists a plane drawing of the concept lattice from which it can be read 198

off. Figure 5 illustrates the distinct plane drawings of the enlarged concept lattice 199

for Example 1 which result in different S-orders, as for example: 200

e < d < c < i < f < h < g < b < a

e < d < i < f < c < h < g < b < a .3 variations/

e < d < c < f < i < h < g < b < a .2 variations/

e < d < c < i < f < g < h < b < a .2 variations/

e < d < c < h < g < i < f < b < a .2 variations/

a < b < g < h < f < i < c < d < e .2 variations/

Altogether, Example 1 has 48 (D 3 � 2 � 2 � 2 � 2) distinct solutions, i.e., distinct 201

S-orders. 202

2.3 The Problem of Identifying Elements for Duplication 203

Theoretically, Theorem 1 enables us to specify for each set of classes whether it is S- 204

sortable without duplications or not. Since in the case of an S-sortable set of classes 205

the proof of the theorem even establishes a method to construct a concrete S-order 206

Theorem 1 solves Problem 1 in theory. Though in practise, deciding whether the 207
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d c b

e fa

Fig. 6 Enlarged concept lattices for Example 2

Hasse-diagram of a concept lattice can be drawn without intersecting edges is not 208

trivial. For smaller examples like Example 2 a close inspection of the Hasse-diagram 209

of the enlarged concept lattice given in Fig. 6 is sufficient to see that it is impossible 210

to draw this Hasse-diagram without intersecting edges. This proves that the set of 211

classes in Example 2 is not S-sortable. However, for more complex sets of classes 212

like the one given by the sound classes used in Pān. ini’s Sanskrit grammar the inves- 213

tigation of the Hasse-diagrams become more awkward. Other necessary as well as 214

sufficient conditions for S-sortability have been developed in Petersen (2008) which 215

are easier to verify, but due to space limits they cannot be evolved here in detail. 216

The most useful condition is based on the property of being bipartite of so-called 217

Ferrers-graphs (cf. Ganter, & Wille, 1999; Petersen, 2008, 2009; Zschalig, 2007). 218

Whether a graph is bipartite can be checked algorithmically; hence, this conditions 219

opens up a way of investigating more complex sets of classes automatically. 220

The problem of identifying the best candidates for duplication is intricate, too. 221

In order to construct an optimal S-order for a set of classes which is not S-sortable 222

one has to identify those elements whose duplication leads to the “shortest” S-order, 223

i.e., the aim is to duplicate as few elements as possible. In the case of Example 2 it 224

is sufficient to duplicate one element, namely for example b. Duplicating element b 225

means adding a copy b0 to the base set A and changing some instances of b in the 226

set of subsets ˆ to b0. One of the optimal solutions to Example 2 is to duplicate b 227

such that the new base set becomes fa; b; b0; c; d; e; f g and the new set of subsets 228

becomes ffd; eg; fa; b0g; fb; c; d g; fb; c; d; f gg. An S-order of the new set of classes 229

with one duplication is for instance 230

f < b < c < d < e < a < b0:

In Petersen (2008) a whole battery of methods for the identification of elements 231

which are good candidates for duplication is developed. Although it can still be hard 232

to identify good candidate elements for duplication, the problem becomes much 233
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less challenging if one does not ask for absolutely minimal but just quite minimal 234

S-orders. 235

For instance, in situations as described in Sect. 1.1, where books or products have 236

to be forced into a linear order, adding additional copies is expensive and space 237

consuming, but not impossible. It can be assumed that by applying S-orders less 238

books or products have to be placed at two distinct regions than by applying standard 239

mono-hierarchical classification methods. 240
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