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Abstract. Formal semantic theories are designed to explain how it is
possible to produce and understand an in�nite number of sentences on
the basis of a �nite lexicon and a �nite number of composition rules.
According to this architecture, language comprehension completely pro-
ceeds in a bottom-up fashion only driven by linear linguistic input thereby
leaving no room for a predictive component which allows to make ex-
pectations about upcoming words. This is in stark contrast to neuro-
physiological research in the past decades on online semantic processing
which has provided ample evidence that prediction plays indeed an in-
dispensable role in language comprehension (the brain as a prediction
machine, [Ber10]). In this article, we present an extension of formal se-
mantic theory that allows to make predictions of upcoming words. The
basic intuition is: predictions are based on incomplete information. Draw-
ing (defeasible) conclusions based on such information can be modeled
by default reasoning. Since predictions can go wrong, a second strategy
for retracting wrong guesses is needed in order to to integrate (unex-
pected) words into the prior context. This is modeled by belief revision.
We model both processing stages, making predictions about upcoming
words and integrating them into the prior context, and relate the models
to the empirical �ndings in neurophysiological research.1

Keywords: default logic, modal logic, cognitive semantics, system Z, N400, late
positivity

1 The brain as a prediction machine

In formal semantic theories meaning is taken to be a relation between language
and the external world (or reality). This relation is de�ned inside a logical theory,
e.g. some form of type logic, using notions like `reference', `satisfaction' and
`truth'. On this view the main goal of natural language semantics is a de�nition

1 We thank our anonymous reviewers who helped to improve this paper by provid-
ing an elaborated and constructive feedback to former versions. The research was
supported by the German Science Foundation (DFG) funding the Collaborative Re-
search Center 991.
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of the truth for sentences in a natural language. This goal is achieved by giving a
recursive and compositional analysis of the well-formed expressions of a language.
Based on a �nite lexicon and a �nite set of composition rules, it then becomes
possible to both produce and parse an in�nite set of sentences none of which
needs to be stored in the brain. This characterization is still valid for dynamic
approaches like DRT or DPL in which the notion of truth is replaced by that of
a relation between (information) states.

From a psycholinguistic or neurophysiological point of view the concept of
meaning endorsed in formal semantics is quite unsatisfactory since it completely
leaves out the question of how language is processed in the brain. A prime
example that has emerged during the last three decades both in behavioral and
electro-physical research are predictions or expectations of upcoming words in a
given context.2 Consider the example in (1) taken from [FK99, 469].

(1) Getting himself and his car to work on the neighboring island was time
consuming. Every morning he drove for a few minutes and then boarded
the . . . .

When asked, most people end the second sentence with the word `ferry'. This
behavior is remarkably robust across individuals and it is empirically de�ned in
terms of a word's cloze probability3 in a given (sentential) context. For exam-
ple, in (1), `ferry' has highest cloze probability (CP) and is therefore the best
completion (BestComp). Since none of the individual words in (1) is strongly se-
mantically related to `ferry', it seems most likely that the context preceding `. . . '
together with world knowledge is used during language processing to pre-activate
semantic properties which best apply to (the concept expressed by) `ferry' but
not to the same degree to other vehicles like gondolas or airplanes. On this in-
terpretation, both world knowledge and context play a crucial role in setting up
semantic properties on the basis of which an expectation (or prediction) for an
upcoming word is formed.

According to Baggio and Hagoort, examples like (1) show that formal seman-
tics `is by design insensitive to di�erences between words of the same syntactic
category denoting objects of the same type', [BH11, 1343]. Their own example
is (2).

(2) Last Friday the cruiser Arberia entered the port/hippodrome of Trieste.

They argue that the di�erence between the two continuations after `entered the'
must be semantic in nature because pragmatic deviance like the violation of a
Gricean conversational maxim does not occur (if one assumes that both sentences

2 `Prediction' must not be understood as a conscious or strategic process. Rather,
prediction is understood as the unconscious activation of semantic properties of
upcoming words prior to their occurrence, [FK99, 487].

3 Cloze probability: participants in an o�ine norming task are presented sentence
frames like that in (1) and are asked to �ll in the dots with the �rst word that
comes to their mind. The proportion, ranging from 0 to 1, of respondents supplying
a particular word is de�ned as the cloze probability of this word in that context.
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are false at speech time). In addition, the di�erence has nothing to do with the
way the world looks like.

However, note that Baggio and Hagoort's argument is based on the implicit
assumption that the problem arises only at the level of integration/composition.
After `port' or `hippodrome' have been semantically recognized, they have to be
integrated or combined with (the semantic representation of) the previous con-
text. For `port', being a best completion, this should pose no problems whereas
for `hippodrome' this integration should be much more di�cult, if not impossi-
ble, given that this word is not only semantically unrelated but almost semantic
anomalous to the semantic properties of the context. Though integration and
prediction are closely related, the problem of how predictions and/or expecta-
tions can be represented in formal semantic theories cannot be reduced to simply
incorporating it into the integration/composition mechanism.

If prediction (or expectation) is understood in the sense that it is based on
the pre-activation of semantic features of words which are not yet presented to
the comprehension system, the problem of combining or of integrating that word
with the current semantic representation does arise only at a second stage. In a
�rst stage, the semantic features of the expected upcoming, not yet presented,
word are activated simultaneously (or in parallel) with the semantic features of
words that have already been recognized and combined with the prior context.4

Thus, there must be a separate mechanism which makes it possible to deduce
semantic features (σ) from information that is already part of the semantic rep-
resentation (τ) of the prior context and world knowledge (τ ′) stored in Long
Term Memory (LTM). Then, using τ and τ ′, σ is deduced. Prediction is closely
related to integration. Since predictions are risky � they can go wrong � there
needs to be an additional (or subsequent) mechanism that deals with wrong
guesses by explaining how they can be retracted. Exactly at this point predic-
tion becomes related to integration/composition. Predicted semantic features are
used to build up a semantic representation of the upcoming word, which even-
tually is integrated with the prior context. If a prediction turns out to be wrong
because a non-expected word is encountered, integration is successful only if the
wrong guesses are �rst retracted because otherwise combining the predicted with
the actual encountered features results in an unsatis�able semantic representa-
tion. Since predicted and actual features are combined, semantic anomalies like
`hippodrome' in (2) is a limiting case of the prediction-integration mechanism.

The above considerations lead to the following questions. At the empirical
level one gets: (i) what neurophysiological evidence is there to support a dis-
tinction between prediction and integration/composition? (ii) given that there
is a distinction between prediction and integration/composition, what type of
information is predicted (atomic vs. decompositional in terms of semantic fea-

4 Note that the pre-activated features used to predict upcoming words cannot simply
be part of information about arguments, say, of verbs or common nouns. For ex-
ample, `board' in isolation does not prime (semantic features of) `ferry' as opposed
to (semantic features of) other semantically possible arguments like `gondola' or
`airplane'.
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tures)?, and (iii) predictions can be wrong; is there any empirical evidence for
a stage in online semantic processing at which wrong predictions are retracted?
If yes, how is this stage related to integration? These questions will be the topic
of the next section where we will review electrophysiological experiments involv-
ing event-related brain potentials, in particular the N400 and two kinds of late
positivity.

When implementing a predictive mechanisms in a formal semantic theory,
the two principle questions are (i) in what exactly does this mechanism consist?,
and (ii) where in the overall architecture of such a theory is it to be located?
These questions will be the topic of the second part of this paper (see section 3).
In the last part of the paper (section 4), we introduce wide-spread alternative
approaches to interpret results on the N400 and P600 components (N400 as an
index of semantic integration and P600 as an index of syntactic processing) and
brie�y discuss their shortcomings and possible implications for our theory.

2 Semantic processing online: evidence from ERPs

For semantic processing, an important event-related potential (ERP) compo-
nent5 is the N400. It is a broad, negative-going de�ection that starts around
200-300 ms after a word has been presented, either auditory or visually, and
peaks around 400 ms after stimulus onset. In neuroscience there is an ongoing
dispute of whether the N400 re�ects semantic prediction and lexical retrieval or
semantic integration operations [BFH12]. In the following, we focus on the for-
mer view; section 4 critically discusses the latter approach. Thus, our approach
builds on the hypothesis that the N400 is an index that allows one to examine
the impact and the extent long-term memory (LTM) have on on-line semantic
sentence processing. Its amplitude for a word in a given context is modulated
(though not monotonic to) the word's o�-line cloze probability. It was �rst ob-
served in case of semantic anomalies like `I like my co�ee with cream and socks'.
However, each word in a sentence elicits an N400. Furthermore, it does not even
require a sentential context as shown by semantic priming tasks which involve
the presentation of a semantically related or unrelated word before a target word:
co�ee � tea vs. chair � tea. Here `tea' yields a larger N400 when followed after
`chair'. Note that, the N400 is not sensitive to negation. E.g., both `A carrot is
a fruit' and `A carrot is not a fruit' generate more N400 activity than `A carrot
is a vegetable'.

5 An event-related potential (ERP) is the measured brain response that is the direct
result of a speci�c sensory, cognitive, or motor event. An ERP component is a por-
tion of an ERP waveform that has a characteristic shape, timing and amplitude
distribution across the scalp and a well-characterized pattern of sensitivity to exper-
imental manipulations or neural source,[KF11,LPP08]. It is important to note that
the common statement that a word does not elicit an ERP component (which will
be used in this paper as well) is a simpli�cation. It is meant that it does not trigger
a brain response that signi�cantly di�ers from the baseline response triggered by
some control word.
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2.1 Fine-grained expectations: semantic features are pre-activated

In their seminal paper [FK99], the authors investigated the following three ques-
tions w.r.t. predictions using N400 e�ects: (i) what type of information is pre-
dicted in a given context?, (ii) what in�uence do di�erent kinds of constraining
contexts have on those predictions?, and (iii) what in�uence do semantic rela-
tions between di�erent target words have on the predictions? The experimental
design consisted of pairs of sentences which were read by participants for com-
prehension. The �rst sentence established an expectation for a particular exem-
plar of a semantic category, syntactically realized by a common noun, while the
second ended either (a) with this best exemplar, (b) an unexpected exemplar
from the same (expected) category or (c) an unexpected exemplar from another
category. An example is given in (3).

(3) They wanted to make the hotel look more like a tropical resort. So along
the driveway, they planted rows of palms/pines/tulips.

Two of the three words belonged to the same taxonomic category. For exam-
ple, both `palm' and `pine' are subtypes of the category `tree'. The third mem-
ber, `tulip' in (3), did not belong to that category but, importantly, there was
a (common) category to which all three words (or the concepts expressed by
them) belong: plant. Unexpected exemplars from the same category are within-
category-violations (WCV) whereas unexpected exemplars from another cate-
gory are between-category-violations (BCV). Completions were ranked according
to their o�ine cloze probability (CP, cf. footnote 3). Best completions (`palm')
have highest CP. Both WCVs and BCVs had the same low CP in a given con-
text. Additionally, sentential contexts were divided into two groups: strongly
constraining and weakly constraining contexts. This distinction was de�ned by
a median split on the CP of the best completions. For strongly constraining con-
texts best completions had an average value of 0.896 and in weakly constraining
contexts of 0.588. WCVs and BCVs always had a CP < 0.05 across both sen-
tential constraints. (3) is an example of a strongly constraining whereas (4) is a
weakly constraining context.

(4) The gardener really impressed his wife on Valentine's day. To surprise
her, he had secretly grown some roses/tulips/palms.

The following results were found. Overall, the N400 amplitude was signi�cantly
larger (i) for BCVs than for WCVs and (ii) for WCVs compared to best comple-
tions, i.e. one got BestComp < WCV < BCV (see Figure 1 for details). Strongly
constraining contexts are associated with overall slightly higher, i.e. more posi-
tive, amplitudes than weakly constraining contexts, [FK99, 481]. However, there
was a di�erence w.r.t. the factor `constraint' for WCVs. Such violations elicited
a less enhanced N400 amplitude in strongly constraining compared to weakly
constraining contexts (cf. Figure 1). For both BestComp and BCVs, by contrast,
there were no signi�cant di�erences between the two kinds of contexts.
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(a) taken from [FK99, p. 481] (b) taken from [FK99, p. 483]

Fig. 1. (a) Comparison of N400s for BestComp (expected exemplar), WCV (within
category violation), and BCV (between category violation. (b) Comparison of N400s
for WCVs in strongly constraining (high constraint) and weakly constraining contexts
(low constraint).

The consequences which these results have for an account of online semantic
processing are the following (for details, see [FK99]). First, the information pro-
vided by the context must be rather speci�c. This follows from the di�erence in
N400 amplitude between BestComp and WCVs. If only general taxonomic, say
category level, information were available, members of the same category, say
`palm' and `pine', should elicit similar brain responses. Second, the N400 is sen-
sitive to category violations. Words that are unexpected but belong to the same
category as the best completion are processed di�erently from unexpected ones
belonging to a di�erent category, though both words have the same (low) CP.
Second, predictions/expectations come in degree and depend on the strength of
the context.

According to [FK99, 489], these results constitute evidence for the view that
what gets pre-activated and what is stored in LTM are semantic features of
concepts expressed by words and not (discrete) atoms like `ferry' or `palm'. The
features that get activated are those associated with the best completion(s), i.e.
those words having the highest CP in the given context, plus possibly features
that can be inferred using world knowledge. For example, in (3) the context
together with world knowledge pre-activates such features as `tropical', `resort',
`adornment', `tree', and `evergreen' since `palm' is the best completion having
the highest CP. Since three of those features equally apply to `pine', its N400
amplitude though larger than that for `palm' is smaller than that for `tulip', for
which only one feature applies. For a strongly constraining context, the number
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of pre-activated features is greater and therefore more constraining than the
number of such features in a corresponding weakly constraining context. The
more features of an upcoming word get pre-activated, the higher the probability
is that even for unexpected but semantically related words (that belong to the
same category) there is su�cient overlap with those features so that lexical
access is facilitated. Hence, since in a strongly constraining context the number
of pre-activated semantic features is greater than in a corresponding weakly
constraining context, WCV should elicit a lower N400 amplitude in strongly
constraining than in weakly constraining contexts, as borne out by the empirical
data. Furthermore, since the overlap between pre-activated and actual semantic
features is equally low for BCVs, the amplitude of the N400 should be the same
for strongly constraining and weakly constraining contexts, again in line with
the empirical data. Consequently, predictions/expectations should be graded
and these degrees should be re�ected in the corresponding amplitudes of the
N400. But this is exactly what happens: BestComp < WCV < BCV across
sentence constraint. In sum, if in a particular context a part of the semantic
features representing a word A in the brain, say `palm', is (pre-)activated, the
comprehension system is better prepared to access and semantically process
another word B, say `pine', whose set of semantic features has a greater overlap
to that of A than a word C, say `tulip', for which this overlap is smaller.

2.2 The risk of pre-activation: wrong guesses

Predictions are risky because they can turn out to be wrong. E.g., if in the con-
text of (3) `palm' is predicted but `pine' is eventually found, some expectations
are wrong and must be deleted or retracted. Thus, there should be a stage in on-
line semantic processing during which wrong guesses are undone. One candidate
for such an operation is semantic integration. There are at least two kinds of
evidence for drawing a distinction between a prediction stage in which possibly
wrong features of the upcoming word are predicted and an integration stage of
the semantic of the actual encountered word in which wrong features are deleted
and new ones are added. First, if the N400 would be related not only to the
prediction stage, but to the stage of semantic integration as well, words with
the same meaning should elicit identical or very similar N400 e�ects, However,
this is not the case as shown by the following empirical result. [DUK05] used
sentence pairs like those in (5) where the sentence frame ended either with `a' or
`an'. Since these two articles have exactly the same meaning, they should elicit
the same N400 e�ects.

(5) The day was breezy so the boy went out to �y a/an . . .

[DUK05] found a larger N400 amplitude for `an' compared to `a'. Since both
articles have the same meaning, there should be no di�erence in brain response
when it comes to integrating it with the semantic representation of the previous
context because the semantic relation to this context must be exactly the same
for both words. By contrast, if one assumes that the context preceding the ar-
ticle establishes a particular prediction for the most expected word `kite', this
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di�erence can easily be explained. Since `kite' begins with a consonant, `a' is
expected and not `an'.

Second, there is post-N400 brain activity which is related to the semantic
distinctions on which the N400 is based: late positivities. [FWODK07] considered
pairs of sentences like those in (6).

(6) a. The children went outside to play/look. (strongly constraining con-
text)

b. Joy was too frightened to move/look. (weakly constraining context)

In both kinds of context the unexpected ending, `look' for example, had the same
(low) CP.6 In addition, the unexpected ending was not semantically related to
the best completion and were considered plausible in an o�-line norming task.
Thus, any di�erence w.r.t. N400 e�ects could be attributed to the constraint of
the sentence context. The results of the experiment showed that the N400 e�ects
were graded by CP. The N400 amplitude was smallest for the best completion
in the strongly constraining context; it was intermediate for the best completion
in the weakly constraining context and highest for the unexpected completion
for both kinds of constraint. However, the unexpected ending di�ered w.r.t.
another ERP-component: a late frontal positivity between 500 and 900 ms over
frontal electrode sites emerged for unexpected words in strongly constraining but
not in weakly constraining contexts. The authors comment [FWODK07]: `This
processing stage thus seems to be sensitive to the greater degree of mismatch
between the rich information provided by a strongly constraining sentence and
an unrelated (though plausible) unexpected word, leading to the possibility of
surprise and/or increased resource demands entailed by the need to override or
suppress a strong prediction for a di�erent word or concept.' This result was
reproduced by [DQK14] using sentences like that in (7).

(7) For the snowman's eyes the kids used two pieces of coal. For his nose they
used a carrot/banana/groan from the fridge.

According to [DQK14], the contexts in (7) were strongly constraining since the
mean CP of the best completion, `carrot', was 73.9%. Besides a best completion
there was a semantically related and plausible continuation, `banana', and a se-
mantically unrelated and implausible (or impossible) continuation, `groan' in (7).
The CP for both kinds of continuation was equally low: < 0.01%. In addition to
the late frontal positivity the authors found an increased parietal post-N400 pos-
itivity (PNP) for unexpected and semantically implausible words. Importantly,
this positivity was not exhibited by unexpected but plausible words like `banana'
in (7). Similarly, the late frontal positivity was only found for plausible but not
for implausible (impossible) continuations.

Since both kinds of late positivity are not graded (in contrast to N400 e�ects)
and apply only to one particular type of unexpected continuations, they can

6 Cloze probabilities: `play': 91%; `move': 31% and `look': 3% in both contexts.
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neither be taken to simply re�ect some process of plausibility evaluation nor be
interpreted as a `mismatch' detector.

When taken together, the results in this section provide evidence for the
following picture of online semantic processing.7 Semantic processing in the brain
unfolds over several stages, [FK99,DQK14,BFH12]. The �rst stage is indexed by
the N400 and has to do with lexical access. Semantic features of an upcoming
word are activated in parallel with features of words that are currently being
processed in order to access that word in LTM. The more features are already
activated, the easier it is to retrieve that item from LTM. At the neural level this
correlation is re�ected by the amplitude of the N400: the greater the overlap with
pre-activated features, and, therefore, the less features have to be additionally
activated, the lower the amplitude. At this stage the item is not (yet) integrated
with the semantic representation of the context. When it comes to integration,
indexed by the two late positivities, what is at stake are no longer those features
that are common to both the pre-activated and the actually encountered set but
those feature which do not apply to the semantic representation of the word
encountered. Two principle cases have to be distinguished: the target word is
either of a type to which the best completion belongs or not. In the �rst case those
features that have been pre-activated but which do not apply to the semantic
representation of the word encountered have to be retracted. By contrast, in the
second case, e.g. `groan' in (7), a di�erent strategy must be chosen because the
semantic representation of the target word is incompatible with the semantic
constraints imposed by the context.

Thus, we have arrived at the following three constraints on a formal semantic
theory: (a) there must be a mechanism which combines semantic information
already present in the context and world knowledge to deduce information about
upcoming, but not yet presented words; (ii) the combinatory process must be
sensitive to a semantic decomposition in terms of semantic features in order
to account for the graded character of expectations; and (iii) there must be a
separate mechanism for retracting wrong guesses made on the basis of incomplete
information.

3 The formal theory: defaults and belief revision

The description at the end of the previous section suggests that online semantic
processing involves some kind of nonmonotonicity. Reconsider example (3); after
semantically processing the context prior to the target word at the end of the
second sentence, all that is known about the concept expressed by that word is
(i) the resort is supposed to look tropical and that (therefore) (ii) something is
planted along the driveway. From this information conclusions about semantic
features of the theme argument are drawn. Likely candidates are (a) type=plant,
(b) category = tree, and (c) habitat=tropics. However, these conclusions are de-
feasible. If the upcoming word is eventually semantically recognized, the predic-
tions made on the basis of the prior context can turn out to be false. This always

7 Section 4 discusses alternative interpretations of the results.
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happens for within-context-violations and between-context-violations. E.g., if in
(3) `pine' is the theme argument, `habitat = tropics' turns out to be false though
the other predictions turn out to be true. As an e�ect, `habitat = tropics' has
to be withdrawn because it is not part of the semantic representation of `pine'.
By contrast, for the best completion `palm', all information predicted before the
word is encountered applies.

Nonmonotonicity will be modelled by default rules. Such rules describe the
expectations of the comprehension system. Schematically, such expectations have
the form A⇒ B, with A being some piece of (factual) information provided by
the context through bottom-up processing and B being the conclusions which
normally follow from A. Here, `normally' refers to the fact that A is all that is
known about an object. The conclusions B are defeasible. For example, if in ad-
dition to A⇒ B one has C ⇒ ¬B and C ⇒ A then C is an exceptional A w.r.t.
the property expressed by B. Thus, if in addition to A C is also known about
the object (so that A is not only known), ¬B should (normally) be true of the
object. Applied to our running example of the resort which should look tropical,
one has A

.
= (i) ∧ (ii); B

.
= (a) ∧ (b) ∧ (c) and C = ( sort = pine ∨ sort = tulip

). Thus, additional factual information can invalidate a prior inference based on
less speci�c information. One therefore has: if both A ⇒ B and A ∧ C ⇒ ¬B,
A ∧ C ⇒ ¬B should be used to draw the (default) conclusion ¬B since one has
A ∧ C ⊃ A, i.e. the antecedent of the second default rule A ∧ C ⇒ ¬B implies
that of the �rst one A ⇒ B. This re�ects the fact that during online semantic
processing conclusions drawn by more speci�c (less incomplete) information al-
ways overwrite conclusions drawn on the basis of less speci�c (more incomplete)
information. What is required, therefore is an ordering on default rules which
re�ects this strategy. Since default conclusions can turn out to be wrong, there
must be an additional mechanism of how to retract such wrong guesses. On the
account just sketched, semantic processing therefore not only comprises decom-
positional semantic representations of items in the lexicon together with a set of
recursive composition rules but, in addition, the following two components: (i)
a set of default rules, which are used to draw defeasible conclusions (B) from
factual information (A), and (ii) a mechanism for retracting conclusions got from
applying rules in (i).

The relation to the ERP components, the N400 and the two kinds of late
positivity, is the following. Default rules are correlated to the N400 and therefore
to the �rst stage of online semantic processing. The relevant parameter is the
di�erence between those semantic features derived after semantic recognition
of the target word and those features derived prior to that recognition. This
di�erence re�ects the additional features that have to be activated. The two late
positivities are correlated with those semantic features that were predicted prior
to the semantic recognition of the target word but which turn out to be false
and which therefore have to be retracted.

We will develop the formal theory in two steps. Building on [Bou94]. we begin
by de�ning default rules as a conditional ⇒ in a modal logic with a Kripke-
style semantics based on a normality ordering which re�ects the expectations a
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comprehender has for a particular constituent of a sentence in a given context.
Such models are the appropriate level to reason about the whole set of defaults
represented by that model. Which default conclusions can be drawn depends on
the available factual information. Such reasoning is best modeled in a particular
model based on a (priority) ordering on defaults. This leads to system Z, [GP92],
which will be introduced in the second step.

3.1 Formal theory I: ⇒ and CO-models

The conditional logic chosen is that of Boutilier, [Bou94]. In this theory, the con-
ditional connective⇒ is not a primitive but is de�ned inside a modal logic using
modal operators. One reason for choosing this framework is its generality. Besides
default reasoning, it also allows to model belief revision. In addition, Boutilier's
logic incorporates other approaches, in particular that of Pearl, [Pea90], in the
sense that those logics are equivalent to fragments of Pearl's logic. This makes
it possible to use either of these formalisms, depending on the context.

The basic idea underlying [Bou94] is to order situations (modeled as possible
worlds in terms of valuations in a Kripke model) according to some measure of
normality. This measure is represented by an accessibility relation ≥N on worlds.
One has w ≥N v i� v is at least as normal as w. w >N v holds if v is strictly more
normal than w, that is if w ≥N v and not v ≥N w. The relation ≥N is required to
be (i) transitive and (ii) totally connected from which together re�exivity follows:
(i) ∀uvw : u ≥N w ∧ w ≥N v ⊃ u ≥N v, and (ii) ∀wv : w ≥N v ∨ v ≥N w.
Models in which (i) and (ii) hold consist of totally ordered clusters of worlds,
where a cluster is any maximal set of worlds s.t. w ≥N v for each w, v in this set,
i.e. the elements of a cluster are all equally normal and the cluster is maximal
w.r.t. this condition. If the set of worlds is �nite, this chain of clusters has
both a minimal and a maximal element. Furthermore, this ordering determines
a normality ranking for each cluster and, therefore, for each world in W .8

Next, the language LFrame is de�ned. As was shown in the �rst section, the
information predicted is rather speci�c. We will therefore use a frame-based
approach [Pet07]. Frames are recursive rooted attribute-value structures.9 A
modal language for talking about such structures is given by a set {Pσ}σ∈Σ
of sort symbols (Σ = {tree, palm, . . .}) and a set {Attrat}at∈ATTR of attribute

8 The ordering ≥N depends both on the kind of context and the comprehender. The
dependency on the context corresponds to the distinction between strongly con-
straining and weakly constraining contexts. In a strongly constraining context there
are more expectations than in a weakly constraining context. The dependency on
a comprehender is illustrated by the following example concerning the moral value
system of a comprehender. [BHN+09] presented examples like `I think euthanasia
is an acceptable course of action' to members of a relatively strict Dutch Christian
party and to non-Christian respondents with su�ciently contrasting moral value
systems. The result was that for both groups there was an enhanced N400 though
it was larger for members of the strict Dutch Christian party.

9 Note that [Pet07] allows unrooted frames as well, but such frames are of no interest
for our purpose.
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symbols (ATTR = {habitat, look, . . .}). Elements of {Pσ}σ∈Σ are interpreted as
unary relations and elements of {Attrat}at∈ATTR as binary relations on a set
of nodes. Formulae are of the form at1 : at2 : . . . atn = σ, expressing that the
value at the end of the sequence of attributes at1 : at2 . . . atn is of sort σ. They
therefore express properties of nodes, as can be seen by looking at the standard
translation of such a formula in �rst-order logic: λx∃y1 . . . ∃yn.at∗1(x, y1) ∧ . . . ∧
at∗n(yn−1, yn) ∧ σ∗(yn) (see [PO14] for details). By interpreting such formulae
at the root of a frame, a frame can be described by what is true at its root.
On this perspective, frames can be taken as points (possible worlds) in a model.
Formulae of the form at1 : at2 . . . atn = σ are then atomic propositions in the

language LFrame. In addition, LFrame has three modal operators �,
←
� and �>.

While �A refers to all accessible (i.e. equally or more normal) worlds in the

ordering ≥N ,
←
� A means that A is true at all inaccessible worlds, i.e. at all

worlds which are strictly less normal than the world at which
←
� is evaluated.

�> is the strict variant of �. Models for LFrame are de�ned below.

De�nition 1 (A CO-model; [Bou94, 101]) A CO-model is a triple 〈W,≥N
, V 〉 s.t. (i) W is a non-empty, �nite set of worlds, (ii) ≥N is a binary relation
on W that is transitive and totally connected and (iii) V is a valuation function
for the atomic formulas in LFrame.

Truth of a formula is de�ned as follows.

De�nition 2 Let M = 〈W,≥N , V 〉 be a CO-model with w ∈W . The truth of a
formula A at w in M is de�ned inductively by

(i) M |=w A i� w ∈ V (A) for atomic sentence A.
(ii) M |=w A ⊃ B i� M |=w B or not M |=w A.
(iii) M |=w ¬A i� not M |=w A.
(iv) M |=w �A i� for each v s.t. w ≥N v : M |=v A.
(v) M |=w

←
� A i� for each v s.t. w �N v : M |=v A.

(vi) M |=w �>A i� for each v s.t. w >N v : M |=v A.

In terms of � and
←
� the following modal operators are de�ned.

De�nition 3 (De�ned modal operators)

1. ♦A ≡df ¬�¬A.
2.
←
♦ A ≡df ¬

←
� ¬A.

3.
↔
� A ≡df �A∧

←
� A.

4.
↔
♦ A ≡df ♦A∧

←
♦ A.

One has: ♦A is true at w ∈W i� A is true at some equally or more normal world

v; similarly,
←
♦ A holds at w just in case A holds at some strictly less normal

world v;
↔
� A holds at a world w i� A is true at each world w ∈W ;

↔
♦ A is true

at w i� A is true somewhere in the model, i.e. if there is a world v ∈W at which
A is true. The conditional ⇒ is de�ned in De�nition 4.
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De�nition 4 ([Bou94, 104]) A⇒ B ≡df
↔
� ¬A∨

↔
♦ (A ∧�(A ⊃ B)).

According to De�nition 4, A ⇒ B is true at a world w just in case either A
is false at every world in the chain of worlds, i.e. the conditional is satis�ed
vacuously, or at the most normal A-worlds (A ⊃ B) holds. The truth of A⇒ B
is independent of a particular possible world. If A⇒ B holds at some w, then it
holds at all v ∈W . This follows from the fact that the disjuncts in the de�nition

of ⇒ are modally decorated by
↔
� and

↔
♦, respectively. As a consequence, the

truth of A⇒ B only depends on the complete ordering of worlds.
A CO-model represents the set of default rules ∆D of a comprehender w.r.t.

an argument (or a constituent) of a sentence in a given context. Together with
factual information A got from bottom-up processing of the prior context (and,
possibly, world knowledge), default rules A ⇒ B are used to (defeasibly) infer
B. More generally, one has: the local epistemic state of a comprehender w.r.t.
an upcoming word is a quadruple ES = 〈Γ, Γ ∗, ∆D, ∆E〉. ∆D is a set of defaults
of the form A ⇒ B and ∆E is the set of expectation rules given by the cor-
responding material conditionals A ⊃ B.10 Γ is the set of factual information
about the word. Before the word is semantically recognized it contains informa-
tion got from the context. Upon recognition of the word, sortal information, e.g.
sort=palm is added. Γ ∗ is a set of default conclusions pertaining to the target
word. They are inferred using Γ and ∆E .

The reason for distinguishing Γ and Γ ∗ is directly related to the way seman-
tic information is used in default rules A⇒ B. The antecedent contains factual
information from bottom-up semantic processing. This information is stored in
Γ . By contrast, the information B in the consequent of a default rule is used to
build up a partial semantic representation of an upcoming word. Since this infor-
mation is in general defeasible (the problem of `wrong guesses'), it is not directly
integrated with the factual information stored in Γ but stored separately in Γ ∗.
This re�ects the distinction between lexical access (�rst stage of semantic pro-
cessing) and integration (second stage of semantic processing). During semantic
processing, Γ and Γ ∗ are constantly updated whereas both ∆D and ∆E remain
�xed.

3.2 Defaults and online semantic processing

Next we will apply CO-models to online semantic processing. As our running
example we will take (3), repeated below for convenience.

(8) They wanted to make the hotel look more like a tropical resort. So along
the driveway, they planted rows of palms/pines/tulips.

After processing (8) up to the �nal world, the comprehender has got the following
factual information which is relevant for drawing default conclusions about the
object planted.

10 The reason for distinguishing ∆D and ∆E will become clear if a ranking on the set
∆D of default rules using System Z is de�ned. See below for details.
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(9) a. resort:look=tropical.
b. resort:driveway:adornment=>.

Let this information be A0. This information is related to the following default
rules.

(10) a. A0 ⇒ resort:driveway:adornment:type=plant.
b. A0 ⇒ resort:driveway:adornment:category=tree.
c. A0 ⇒ resort:driveway:adornment:sort:habitat=tropics.

When taken together, one gets default rule r0 in (11).

(11) r0 : A0 ⇒
resort:driveway:adornment:type=plant ∧
resort:driveway:adornment:category=tree ∧
resort:driveway:adornment:sort:habitat=tropics.

The material conditional r∗0 corresponding to r0 is (12).

(12) r∗0 : A0 ⊃
resort:driveway:adornment:type=plant ∧
resort:driveway:adornment:category=tree ∧
resort:driveway:adornment:sort:habitat=tropics.

What happens if the upcoming word is eventually encountered and seman-
tically recognized? In our frame theory, the information provided by a common
noun like `palm' is taken as sortal information. In (8), this is the value of the
sort-attribute. Thus, if `palm' is semantically recognized

resort:driveway:adornment:sort=palm

is added to Γ . The default rule corresponding to this information is r1.

(13) r1: A0 ∧ resort:driveway:adornment:sort=palm⇒
resort:driveway:adornment:type=plant ∧
resort:driveway:adornment:category=tree ∧
resort:driveway:adornment:sort:habitat=tropics.

Rule r1 di�ers from r0 in one respect. Its antecedent is more speci�c than that
of r0 (A1 ⊃ A0). This re�ects the fact that r0 is used in a situation of incomplete
information, i.e. the upcoming word has not yet been semantically recognized
whereas r1 is used after that recognition has taken place. The consequents are the
same because `palm' is the best completion and therefore all predicted properties
apply to the word encountered. The general pattern between these two default
rules is given in (14).

(14) r0 : A⇒ B.
r1 : A ∧ C ⇒ B.
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This pattern can be taken as showing that encountering the best completion
amounts to a con�rmation of the expectations drawn when this word is not
yet encountered.11 The situation is di�erent if instead of the best completion a
within-context-violation like `pine' is found. Similar to the case of `palm', new
sortal information is added to the factual information,

Γ : resort:driveway:adornment:sort=pine.

One also has that the antecedent of the corresponding default rule is more speci�c
than that of r0. But in this case the two consequents are logically incompatible
because B0 contains resort:driveway:adornment:sort:habitat=tropics whereas B2

contains resort:driveway:adornment:sort:habitat=moderate.

(15) r2: A0 ∧ resort:driveway:adornment:sort=pine⇒
resort:driveway:adornment:type=plant ∧
resort:driveway:adornment:category=tree ∧
resort:driveway:adornment:sort:habitat=moderate.

The general relation between the two default rules is given in (16).

(16) r0 : A⇒ B.
r2 : A ∧ C ⇒ ¬B.

The case for `tulip' should by now pose no problems. The default rule is r3.

(17) r3: A0 ∧ resort:driveway:adornment:sort=tulip⇒
resort:driveway:adornment:type=plant ∧

11 According to rule r0, an expectation w.r.t. to the theme argument of `plant' does
not include sortal information. Thus, there is no bias towards any tropical tree in
the context of A0. For example, both `palm' and `eucalyptus' are equally expected.
However, if `palm' is the best completion one may argue that this information is
already activated prior to the encounter of the argument. Thus, rule r0 seems to apply
to weakly constraining and not to strongly constraining contexts. However, if sortal
information is part of the consequent of the default rule, alternatives (`eucalyptus')
to the best completion (`palm') are excluded. E.g., rule r0 becomes r00.

(i) r00 A0 ⇒ B0 ∧ resort:driveway:adornment:sort=palm.

Using r00, r1 becomes redundant because upon encountering `palm' no new infor-
mation needs to be added. Rule r1 is replaced by the following rule for the sort
`eucalyptus'.

(ii) r1: A0 ∧ resort:driveway:adornment:sort=eucalyptus⇒
B0 ∧ resort:driveway:adornment:sort=eucalyptus.

An open empirical question is the relation between N400 e�ects both in strongly
constraining and weakly constraining contexts for `palm' and `eucalyptus', i.e. two
concepts that are of the same type, here `plant', but also of the same category. here
`tree', and that both ful�ll the conditions speci�ed in the consequent of rule r0.
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resort:driveway:adornment:category=�ower ∧
resort:driveway:adornment:sort:habitat=moderate.

Similar to the case of `pine', the consequent is logically incompatible with that
of r0 (and also with that of r2). In contrast to `pine', there are two conjuncts
which are logically incompatible. Besides the one specifying the value of the
habitat-attribute, this also holds for the value of the sort-attribute.12

A drawback of the rules r1�r3 is that they contain redundant information.
This is the case whenever they contain information that is also speci�ed in the
rule r0. This information will not be retracted even when a non-best comple-
tion is encountered. An alternative is to only specify that information which is
incompatible with information given by r0. Applied to the processing level, this
means that once a feature is activated it need not be activated a second time.
At the formal level, one uses the following property of formulae.

De�nition 5 (Downward closed property) A formula A is downward closed

i�
↔
� (A ⊃ �>A).

According to this de�nition, a formula is downward closed if its truth at a world
w implies that it holds at all strictly more normal worlds. The revised rules
r′1 − r′3 are given in (18).

(18) r′1: A0 ∧ resort:driveway:adornment:sort=palm⇒ true.
r′2: A0 ∧ resort:driveway:adornment:sort=pine⇒

resort:driveway:adornment:sort:habitat=moderate.
r′3: A0 ∧ resort:driveway:adornment:sort=tulip⇒

resort:driveway:adornment:category=�ower ∧
resort:driveway:adornment:sort:habitat=moderate.

A possible model for the default rules is given in Figure 2. This model is based
on a knowledge base corresponding to our running example: the objects planted
are either palms, pines or trees and there are no `abnormal' instances of those
sorts.13

12 One may argue that rules r1 − r3 are strict and not defeasible. For example, a palm
is a tree and not a �ower. However, in the present context we are interested in the
way a comprehender uses information, both top-down and bottom-up, to build a
semantic representation of a constituent. What matters, therefore, is the relation
between the various rules he uses (the priority ordering) and not the status of an
individual rule as defeasible or strict. For example, rule r2 has a higher priority than
rules r0 and r1 because it describes a situation which is assumed to be less normal.
In addition, not all conjuncts in the consequent of a rule are non-defeasible, given
the antecedent. For example, the tropics are only normally the habitat of palms, but
they grow in moderate habitats as well (e.g., in botanical gardens in Europe).

13 These restrictions are due to the fact that we do not have any information about
the way, say, orchids (tropical �owers) or palms whose habitat are not the tropics
are semantically processed online. Additional experimental data is needed to tackle
this question.
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Cluster 0 (palm) 1 (pine) 2 (tulip)

tropics true false false
tree true true false
�ower false false true
plant true true true

Fig. 2. Possible model for the running example

Cluster �A∧
←
� ¬A

0 A
.
= habitat=tropcis

1 A
.
= category=tree

2 A
.
= type=plant

Fig. 3. Relation between clusters and properties of objects adorning the driveway

In LFrame, the four clusters can be formally characterized as follows. To begin,

note that the formula �A∧
←
� ¬A holds at a world w0 if A is true at all equally

or more normal worlds w1 whereas at all worlds w2 which are strictly less normal
A is false. This formula can therefore be seen as expressing a kind of `frontier'.
All worlds above the frontier satisfy A whereas all worlds below it fail to satisfy
it. The relation between this formula, properties of the objects adorning the
driveway and clusters are shown in Figure 3. Thus, cluster 0 is a frontier for
the property habitat=tropcis (for ease of readability, only the last attribute of
a chain of attributes is displayed) whereas clusters 1 and 2 are frontiers for the
properties category=tree and type=plant, respectively. This correlation between
clusters and properties shows that of the three properties assumed in a most
normal situation, habitat=tropics is the least entrenched one or the �rst to be
given up. Similarly, type=plant is the most entrenched one whereas category=tree
has a position intermediate between those two properties. Intuitively, one can
say that `tropics'-worlds only see `tropics'-world and similarly for `tree'- and
`plant'-worlds. The di�erence shows up if one looks backwards. `tree'-worlds are
either seen by `non-tropics'-worlds or if in the same non-minimal cluster, `tree'-

worlds are always `non-tropics'-worlds:
↔
� (tree ⊃ (tree∧¬tropics)∨

←
� ¬tropics).

Thus, `tropics'-worlds are more normal than `tree'-worlds. Furthermore, one has
↔
� (�ower ⊃ ♦�tree): `�ower'-worlds are no more normal than `tree'-worlds.

Finally, one has
↔
� (plant ⊃ (tree ∨ �ower)). The above properties are global in

the sense that their truth is independent of a particular world.

General CO-models are appropriate for specifying global properties of the
local epistemic state of a comprehender w.r.t. an upcoming word. If a compre-
hender uses a CO-model to draw conclusions, it is more convenient to use a
particular CO-model which is based on a priority ordering on default rules.
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3.3 Formal theory II: De�ning an ordering on defaults

An ordering on default rules can be de�ned using procedure Z, [GP92]. Defeasible
rules can be veri�ed, falsi�ed or satis�ed at a world w.

De�nition 6 (Verifying, falsifying and satisfying a default rule) A pos-
sible world w in a model M veri�es a conditional A ⇒ B i� M |=w A ∧ B; it
falsi�es A⇒ B i� M |=w A ∧ ¬B, and it satis�es A⇒ B i� M |=w A ⊃ B.

The derivation of a Z-ordering of default rules is based on the notion of toleration,
De�nition 7.

De�nition 7 (Toleration) ∆D is said to tolerate a default A⇒ B i� there is
a world w that veri�es A⇒ B and falsi�es no rule in ∆D, i.e.

(19) A ∧B ∧
∧
rj∈∆D

Aj ⊃ Bj.

Toleration is used to de�ne a natural ordering on a set of defaults by partitioning
this set. The procedure for �nding this partition works as follows. Let ∆ be the
set of defaults. In a �rst step all rules in ∆ which are tolerated by all other
rules are in ∆0. Next, the set ∆

′ = ∆−∆0 is considered. All rules in ∆′ which
are tolerated by all other rules in ∆′ are in ∆1. Next, the set ∆′′ = ∆′ − ∆1

is considered. Continuing in this way, yields a partition ∆0, ∆1, . . . ,∆n of ∆
(provided ∆ is consistent). This procedure is de�ned inductively in De�nition 8
where Γ (∆) is the set of defaults in ∆ which are tolerated by ∆.

De�nition 8 (Partition of a set of defaults) ∆0 = Γ (∆) and ∆τ+1 = Γ (∆−
(
⋃
σ≤τ ∆σ))

Given this partition of ∆, the rank of a default A ⇒ B ∈ ∆ is de�ned by
Z(A⇒ B) = τ i� A⇒ B ∈ ∆τ . The intuition is that lower ranked defaults are
more general and have a lower priority.

Next, the ranking of a world w is de�ned. The rank of a world w is the smallest
integer τ s.t. all defaults having a rank higher or equal to τ are not falsi�ed
by w. This condition is expressed by: w satis�es

⋃
σ≥τ ∆σ or, equivalently by

Z(w) = min{τ : M |=w A ⊃ B for all r ∈ ∆ and Z(r) ≥ τ}. The intuition
is that lower ranked worlds are more normal. Thus, the Z-ranking on worlds
determines a unique preferred structure ZT .

The rank of a (non default) formula A is de�ned as follows.

(20) κz(A) = min{i |A ∧
∧
j:Z(rj)≥iAj ⊃ Bj is satis�able}.

Using this ranking on formulae, a formula B is said to be Z-entailed by a
formula A i� the worlds in which A and B hold are strictly lower ranked than
the worlds in which A and ¬B hold, that is if the rank of A∧B is strictly lower
than the rank of A ∧ ¬B.

De�nition 9 (Z-entailment) A formula B is Z-entailed by a formula A w.r.t.
∆, written A `Z B, i� κz(A ∧B) < κz(A ∧ ¬B).
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(19) and (20) can be used to construct a theory Th(A) which characterizes
precisely the set of conclusions B that defeasibly follow from factual information
A, given a set ∆D of default rules: A `Z B i� Th(A) ⊃ B.

(21) Th(A) = A ∧
∧
i:Z(ri)≥κz(A)Ai ⊃ Bi.

In our application, A is always factual information about an upcoming word (or
an argument) got by bottom-up processing and stored in Γ . ∆D (or ∆E) is a set
of default rules (expectations) which pertain to this argument. In our running
example, this is the theme argument of the verb `plant' in a given context. The
Ai ⊃ Bi are elements of ∆E , i.e. material counterparts of default rules in ∆D.
The elements of Γ ∗ are those Bi which follow from Th(A), i.e. from A and the
Ai ⊃ Bi with A ⊃ Ai.

3.4 Drawing default conclusions from factual information

Let us next apply system Z to our running example. We �rst construct a Z-
ranking on ∆D = {r0, r1, r2, r3}. Rules r1 and r0 are tolerated by all the other
rules. The following valuation veri�es both rules:

resort:look=tropical ∧ resort:driveway:adornment:>
∧ resort:driveway:adornment:type=plant ∧
resort:driveway:adornment:category=tree ∧
resort:driveway:adornment:sort:habitat=tropics ∧
resort:driveway:adornment:sort=palm.

Furthermore, one sets ¬resort:driveway:adornment:sort=X forX ∈ {pine, tulip}.
Since the antecedents of the rules r2 and r3 are pairwise logically incompatible,
each rule tolerates the others. For example, verifying r2 requires

resort:driveway:adornment:sort=pine.

Setting ¬resort:driveway:adornment:sort=tulip satis�es r3. Here it is assumed
that one has e.g. tree ⊃ ¬�ower . Therefore, for j 6= k with j, k ∈ {2, 3} we get
that if a world veri�es Aj ⇒ Bj , it satis�es Ak ⇒ Bk because Ak is false at that
world. The Z-ranking on rules is ∆0 = {r0, r1} and ∆1 = {r2, r3}.

As long as no factual information about the theme is given, one has A = true.
No conclusions using the set of expectations ∆E can be drawn. Furthermore,
Γ = {true}, ∆D = {r0, r1, r2, r3}, ∆E = {r∗0 , r∗1 , r∗2 , r∗3} and Γ ∗0 = ∅. After
processing the prior context, one has A = A0 and Γ = {A0}. Since κZ(A0) = 0,
one gets Th(A0) = A0 ∧

∧
i:Z(ri)≥κz(A0)=0Ai ⊃ Bi. Thus, ∆D = {r0, r1, r2, r3}

and ∆E = {r∗0 , r∗1 , r∗2 , r∗3}. The set of defeasible consequences Γ ∗0 is deduced
from A = A0 and A0 ⊃ B0 yielding Γ ∗0 = {B0}. If `palm' is encountered, the
sortal information sort=palm is added to Γ so that A = A1. Since κ

Z(A1) = 0,
one has ∆D = {r0, r1, r2, r3} and ∆E = {r∗0 , r∗1 , r∗2 , r∗3}. The set of defeasible
consequences is got from A0, A1, and A0 ⊃ B0 and A1 ⊃ B1, which yields
Γ ∗1 = {B1} since B1 ⊃ B0. If instead of r1, r

′
1 is used no new (defeasible)

information is added to Γ ∗.
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If a within-context-violation or a between-context-violation is encountered,
the new sortal information is sort=pine or sort=tulip in our running example. It
is added to Γ , yielding A = A2 (`pine') or A = A3 (`tulip'). In contrast to A0 or
A1, one has κ

Z(A2) = κZ(A3) = 1 so that Th(A2) = A2∧
∧
i:Z(ri)≥κz(A2)=1Ai ⊃

Bi and Th(A3) = A3 ∧
∧
i:Z(ri)≥κz(A3)=1Ai ⊃ Bi. This means that the situation

is not described as most normal. As a result, r0 and r1 can no longer be used.
One rather gets ∆D = {r2, r3} and ∆E = {r∗2 , r∗3}.

For A2 (
.
= sort = pine), the conclusions one gets are given by A2, A2 ⊃

B2, yielding B2. Using r′2 instead of r∗2 , one has B2 = {habitat=moderate},
i.e. Γ ∗1 = {habitat=moderate}. For the BCV `tulip', the situation is similar.
Conclusions are got from A3 and A3 ⊃ B3, yielding B3. Using r

′
3 instead of

r∗3 , the new derived information is habitat=moderate and category=�ower, i.e.
Γ ∗1 = {habitat=moderate, category=�ower}. Both for A2 and A3, it is not pos-
sible to directly add B2 or B3 to Γ ∗, i.e. to use Γ ∗0 ∪ Γ ∗1 . This would result in
an unsatis�able set because one would have both habitat=tropics (from the pre-
vious application of rule r0 prior to the semantic recognition of the theme) and
habitat=moderate from applying r∗2 or r∗3 . In addition r∗3 yields category=�ower
which con�icts with category=tree, again got from applying r0 prior to encoun-
tering the theme argument. Despite the fact that Γ ∗0 (got from applying r∗0)
and Γ ∗1 (the information got from applying r∗2 or r∗3) are logically incompatible,
their union contains all semantic features necessary for building up a semantic
representation of the theme argument.

Let us take stock and compare a best completion, a within-context-violation
and a between-context-violation. One has: (a) in each case sortal information
is added to the default conclusions got prior to encountering the argument, (b)
they di�er w.r.t. the set Γ ∗1 −Γ ∗0 , and (c) they di�er w.r.t. the set Γ ∗0 −Γ ∗1 . The
set Γ ∗1 − Γ ∗0 is the set of semantic features that have to be activated in addition
to those that were activated prior to the semantic recognition of the target word.
By contrast, the set Γ ∗0 − Γ ∗1 (using the rules ri and not the rules r′i) is the set
of semantic features that have to be retracted because they are `wrong guesses'.
Now consider the two hypotheses in (22).

(22) (i) The set Γ ∗1 − Γ ∗0 , i.e. the set of additional features to be activated,
is related to the N400 e�ect, i.e. it is related to the �rst stage of
online semantic processing: semantic access.

(ii) Predicting semantic features of an upcoming word can lead to wrong
guesses. Those wrong guesses must be eliminated before the seman-
tic representation of the target word can be added to the represen-
tation of the prior context. The set Γ ∗0 −Γ ∗1 , containing those wrong
guesses, is related to the two late positivities and therefore to the
second stage of online semantic processing.

In the introduction it was argued that online semantic processing can be split in
(at least) two separate stages: lexical semantic access, indexed by the N400, and
semantic integration, indexed by two late positivities. The former, lexical access,
is based on predictions which are made prior to encountering the target word,
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word encountered |Γ ∗ri − Γ
∗
r0 | N400 amplitude

palm (best completion) 0 base line
pine (within-category violation) 1 a > base line
tulip (between-category violation) 2 b > a

Fig. 4. Default rules and N400 e�ects

and, therefore, on the basis of incomplete information. Such predictions are risky
because they can turn out to be wrong. On the account presented in this paper,
wrong guesses are directly related to the two stages of online semantic processing.
A wrong guess activates less semantic features of the actual target word; thus,
lexical access is aggravated. Accessing additional semantic features comes with
a computational cost because information needs to be retrieved from LTM. This
cost is re�ected in an enhanced amplitude of the N400. This is only one side of
the coin. The other is, of course, that a wrong guess has to be retracted. This
follows from the fact that predictions, be they based on incomplete information
or on information after the word is encountered, are related to accessing the
associated features in LTM. Thus, once a semantic feature has been activated
using rule r0, it has to be retracted if it turns out to be wrong after the target has
been semantically recognized and before the target is integrated into the prior
context. This operation is related to the second stage, the integration stage. As
a result, integration becomes a two stage process: �rst retracting wrong guesses
and only then integrating the semantic representation of the target with the
representation of the prior context. The above correlations will be explained in
more detail in the following sections.

3.5 The N400 and default reasoning

We hypothesize the following correlation between the N400 e�ect and default
reasoning.

(23) Correlation N400 � default reasoning:
The N400 e�ect is monotonic to the di�erence between semantic fea-
tures got after semantic recognition of the target word and prior to its
semantic recognition.

According to (23), the N400 e�ect is correlated to the di�erence between the
pre-activated features Γ ∗r0 if only rule r0 is used, representing the most normal
expectations, and those features contained in the consequent of the rule used
after the upcoming word is eventually being semantically recognized. One cal-
culates the cardinality of Γ ∗ri − Γ

∗
r0 . The greater this cardinality, the greater the

N400 e�ect. Thus, the N400 is a measure of the cost of activating additional
semantic features after recognition of the target word. For our running example,
this correlation is shown in Figure 4.

If `palm' is encountered, rules r0 and r1 apply. As shown above, no new
features need to be activated so that all features already pre-activated become
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part of the frame-representation of the concept expressed by this word. If `pine'
is encountered, neither rule r0 nor rule r1 apply. Instead rule r2 is used. In this
case only one feature does not apply: habitat=tropics so that one new feature
habitat:moderate of the concept expressed by `pine' must be activated. For `tulip',
the situation is similar. The di�erence is that even fewer pre-activated features
apply: type=plant. Therefore, more additional features have to be activated:
category=�ower and habitat=moderate.

The above criterion for the amplitude of the N400 can be re�ned in the
following way. Instead of just counting the number of attributes, one considers
in addition the degree of entrenchment of an attribute. For example, the attribute
`category', with its value `plant', is more entrenched than the attribute `type',
with values `tree' or `�ower'. Formally, such distinctions can be made in an
extension of system Z, system Z∗, [GP91]. In Z∗, a default rule is of the form

A
δ⇒ B. Intuitively, δ is a measure of strength or the degree of surprise of �nding

the default rule violated. Applied to the above example, one gets: the value of δ
for type=plant is greater than that for category=tree.

3.6 Late positivities and belief revision

Frontal late positivity One di�erence between a best completion on the one
hand and a within-context-violation and a between-context-violation on the
other is the fact that for the latter but not for the former there are wrong
guesses. At the formal level, this corresponds to the distinction between Γ ∗0 −Γ ∗1
being empty or not. If this set is empty, the default conclusions drawn before the
target word is encountered are completely con�rmed. Formally, this process is
an addition. First, A, the sortal information, is added to Γ ∗ and next Γ ∗ ∪ {A}
is added to Γ .

(24) a. Γ ∗i+1 = Γ ∗i ∪ {A}.
b. Γi+1 = Γi ∪ Γ ∗i+1.

If a non-best completion is encountered, processing is more involved. This is a
simple consequence of the fact that the comprehender knows that the situation
described is not most normal and that therefore at least some of his expectations
are not satis�ed. First, default rule r0 can no longer be used because the theory
w.r.t. the target word has changed. Instead of Th(A0), Th(Ai) with 2 ≤ i ≤ 3 has
to be used. Second, Th(A0) and Th(Ai) are incompatible. Using (21), this is the
case for the information Bi contained in the consequent of rule ri. For example,
if `pine' is encountered, one gets habitat=moderate, which is incompatible with
habitat=tropics got from applying r0 during the �rst stage. Let this information,
i.e. habitat=moderate, be A. One then has Γ ∗ |= ¬A. Therefore, it is not possible
to simply add A to Γ ∗ because this would result in a set which is not satis�able.
Rather, one �rst has to retract ¬A from Γ ∗. Only after this has been done, the
addition operation given in (24) can be applied. Formally, this amounts to a
revision operation in terms of the Levi-identity.
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(25) Levi-identity:KB
∗
− A = (KB

·
− ¬A) +A.

Revising a knowledge base KB with A amounts to �rst making KB consistent
with A by removing ¬A from KB and then adding A to the resulting KB from
which ¬A has been retracted. For a best completion, the retraction step does not
apply because there is no new default information which is incompatible with
information got during the �rst stage. As an e�ect, revising reduces to a simple
addition. In the present context, KB is always Γ ∗, i.e. the set of default conclu-
sions got by applying r0. A is the conjunction of the literals in the consequent of
rule ri, i.e. the conjunction of those literals which di�er in the value assigned to
an attribute from those in the consequent of r0. Thus, the retraction operation
is always applied to Γ ∗ and therefore to defeasible conclusions. This re�ects the
fact that defeasible information, i.e. information got from top-down processing
using default rules, is always less entrenched than information got by bottom-up
processing.

We hypothesize the following relation between the frontal late positivity and
the formal process described above.

(26) Correlation frontal late positivity � belief revision:

A frontal late positivity is triggered whenever Γ ∗
∗
− A is a proper revi-

sion, i.e. if there is a non-empty retraction operation. In this case default
conclusions drawn before the target word is encountered have to be re-
tracted.

Parietal late positivity As was shown in the previous section, the revision
of Γ ∗i by the new information got from processing the target word is successful,
not only for the best completion but also for a within-context-violation or a
between-context-violation. This follows from the fact that both kinds of violation
satisfy the minimal appropriateness condition imposed on the theme argument
of the verb `plant', namely the type of the object must be `plant'. At the level

of CO-models, this is expressed by the integrity constraint,
↔
� (type=plant).

The e�ect of this constraint is that any attempt to update with information
which does not satisfy this constraint, say sort=groan ∧ type=sound, will fail
because it leads to an inconsistent knowledge base. One has both type=plant
and type=sound. The only way of blocking this result is to retract type=plant
from the knowledge base. However, this is not admissible because it violates the
integrity constraint (or, from the point of view of an attribute-value structure,
the appropriateness condition). We hypothesize the following relation between
a parietal late positivity e�ect and our model of semantic processing.

(27) Correlation parietal late positivity � belief revision:
A parietal late positivity is triggered whenever an integrity constraint is
violated s.t. a `normal' revision operation is not applicable.

It seems that a sentence like `For the snowman's eyes the kids used two pieces
of coal. For his nose they used a groan from the fridge' is interpretable only if at
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least part of the sentence is not taken in its literal sense. For example, the word
`groan' could be used in such a way that it refers to a nose-like object which emits
a groan-like noise when squeezed. The general interpretative strategy behind this
example can be described as follows. The information provided by the head noun
is not taken as specifying the sort of the frame (e.g., it is a groan) but rather as
giving a particular property of the object denoted by that frame, e.g. the value
of a sound quality. The task of making sense of such sentences, then, consists in
�nding a frame s.t. (a) it satis�es the appropriateness condition, and (b) it has
an attribute whose value can be of the sort denoted by the head noun.

Parietal late positivity also shows that during online semantic processing con-
clusions derived from more speci�c information do not always win out. Though
it is true that semantic features got after semantic recognition overwrite con-
trary semantic features got prior to semantic recognition, features imposed on
the argument can never be overwritten. Formally, this is expressed by having
such a constraint be true at all worlds in a CO-model.

On the account developed above, integration / composition is always done
w.r.t. a consistent set of features that are either imposed, predicted prior to recog-
nition or got after semantic recognition. As a consequence, integration/composition
are sensitive to di�erences between words of the same syntactic category denot-
ing objects of the same type.

Summarizing, we have arrived at the following correlations. Late positivity
e�ects are triggered whenever a prediction must be given up. Frontal late pos-
itivities are correlated with wrong guesses which do not violate a sortal type
restriction on an argument of the verb. This is the case for within-context-
violations and for between-context-violations. In this case integration, de�ned
by the revision operation ∗, is possible. By contrast, for parietal late positivity
e�ects, a violation of such a sortal type restriction occurs. In such a case normal
integration is not possible.

4 Comparison to other approaches

In this section we will compare our model with other approaches and discuss
some possible objections. First, we summarize the main theses underlying our
model.

1. The N400 e�ect is related to lexical retrieval of items in LTM. In particular, it
is directly related to the number of additional features (attribute-value pairs)
that must be activated compared to the features which have already been
activated during prediction. Hence, the N400 is not related to integration
and/or composition.

2. The two late positivities are related to integration/composition: in order
to arrive at a consistent new semantic representation (or knowledge base),
predictions that are incompatible with the information got by bottom-up
processing have to be given up. Formally, this amounts to revising the pre-
dictions with the (true) bottom-up information.
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3. When taken together, (1) and (2) yield the following model of semantic pro-
cessing in the brain: The �rst stage, indexed by the N400, is related to seman-
tic retrieval whereas the second stage is related to integration/composition,
which consists in a revision component made up by a retraction followed by
an addition.

Thesis (1) is incompatible with a widely held view of N400 e�ects: the integration
view. We will therefore begin by providing a critical assessment of this view in
section 4.1. According to thesis (2), the P600 is a semantic e�ect, However, this
is at odds with the widely held view according to which it re�ects syntactic vio-
lations and syntactic repairing. Evidence for our interpretation will be discussed
in section 4.2.

4.1 Integration view of the N400

On the integration view, the amplitude of the N400 is related to the e�ort of
integrating a word in the current context, i.e. in the semantic representation
built up so far. On this interpretation, N400 e�ects are (i) post lexical, i.e. they
occur after a word has (semantically) been recognized and (ii) result from a
combinatorial process. After a word has been accessed in LTM, the task consists
in combining the semantic representation of the prior context with the semantic
representation of that word. Thus, at any moment during semantic processing
the set of semantic features is solely built up by words that have already been
processed (or recognized) and not by features of (expected) upcoming words
farther down the sentence.

As noted by [Pyl], a general problem of this account of the N400 is that the
notion of `semantic integration' is usually not sharply de�ned. As was already
shown in the introduction, according to (most) formal semantic theories, com-
posing a word after accessing it with the previous context does not depend on the
way it is semantically related to this context in detail but merely on its general
syntactic and semantic type. Furthermore, it is usually not explained why seman-
tic expectedness and/or relatedness should a�ect semantic integration. Besides
these theoretical weaknesses, this account also faces a number of severe empirical
problems. First, the mismatch between the set of semantic features pre-activated
by a prior context and a within-context-violation is greater in a strongly con-
straining than in a weakly constraining context so that it should be more di�cult
to integrate a WCV, like `pine', in a strongly constraining context compared to
a weakly constraining context. As an e�ect, the N400 amplitude in a strongly
constraining context should exceed that in a weakly constraining context, con-
trary to the empirical �ndings. Second, the integration view predicts that for
two words which are synonymous the di�culty in integrating them should be
the same since they are necessarily semantically related to the prior context in
exactly the same way. This prediction is falsi�ed by example (5) in section 2.2.
Since `a' and `an' have exactly the same meaning, they should elicit the same
N400 e�ects. However, the amplitude of the N400 was larger for `an' compared
to `a'.

DRAFT 



4.2 The P600 as a measure of multimodal updating processes

According to our model, the late positivity (P600) is related to semantic integra-
tion.14 Some predictions that have been made have to be given up because they
are incompatible with the (semantic) information provided by the target word.
This integration view of the P600 seems to be at odds with the popular syntactic
view of this ERP-component. On this view, the P600 is interpreted as indexing
the di�culty of revising or repairing a syntactic analysis when the target word
makes the sentence based on this analysis ungrammatical (see [BFH12, 135] and
[GPKP10] for an overview).

The syntactic view of the P600 has been challenged by a number of empir-
ical results. First, [KHGH00] (see also [BFH12]) compared sentences with long
distance wh-dependencies.

(28) a. Emily wonders who the performers in the concert imitate . . .
b. Emily wonders whether the performers in the concert imitate . . .

Only for (28a), but not for (28b), a P600 was found. Since (28a) is neither
syntactically ill-formed nor does it contain a garden-path, this e�ect has to be
explained in a di�erent way. [KHGH00] suggest that in this case this e�ect
re�ects a process of syntactic integration: the verb `imitate' has to be linked
to the wh-pronoun `who' whereas no such additional operation is needed in the
case of (28b). Thus, the P600 is related to integration and not only to repairing.
In addition, the linking that is required can be interpreted as being semantic in
nature. A further example of a semantic P600 e�ect is given by so-called bridging
phenomena, [Bur06,Sch13].

(29) Yesterday, a PhD. student was shot/killed/found dead downtown. The
press reported that the pistol was probably from army stocks.

Both for `killed' and `found dead', [Bur06] found a P600 e�ect but not for `shot'.
According to [Bur06], this can be explained by assuming that in the former two
cases establishing a coherent discourse relation (say, elaboration) requires more
inferential work. Again, this is a purely semantic (or pragmatic) task which is
related to integrating new information into the semantic representation of the
previous context. In their discussion of the �ndings by [RGF11] and [Bur06],
[BFH12, 136] conclude that `what their materials have in common is that they
require additional processing (as compared to the control condition) in order to
arrive at a coherent mental representation of what the speaker or writer meant
to communicate'. The authors hypothesize that all P600 e�ects can be described
in terms of the construction, revision, or updating of a mental representation of
what is being communicated, [BFH12, 137]. They argue that on this account of
the P600 the observed e�ect re�ects the e�orts in reworking an initial mental
representation and not the revision of a syntactic analysis. Thus for them, the
P600 re�ects integration di�culty. This di�culty is determined by how much the
current mental representation needs to be adapted to incorporate the current

14 This section owes much to the review article [BFH12].
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input. They summarize their view of the P600 as follows [BFH12, 138]: `The
P600 component is the brain's natural electrophysiological re�ection of updating
a mental representation with new information.' Hence syntactic complexities
and violations elicit a P600 e�ect because they re�ect di�culties in building up
a coherent mental representation at the syntactic level. Even more important
than [BFH12]'s account of the P600 e�ect is the way they relate the N400 to
this ERP-component. According to them, the N400 re�ects the retrieval of the
meaning of a word from LTM, [BFH12, 128].

5 Summary

In this paper we showed how a semantic theory can be extended to incorporate a
`predictive' and a `revision' component in order to account for neurophysiological
data on online semantic processing. The general idea is to use a decompositional
frame semantics based on typed attribute-value structures together with a set
of default rules. Such rules are in part pragmatic because their use is context
dependent. Yet, the information inferred is always part of the semantic repre-
sentation of a concept in LTM since the context only determines which part of
the frame representing the concept is activated.
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