Seminar: Formale Begriffsanalyse Begriffsordnung und Begriffsverbände

2. Mai 2006

Dozentin: Wiebke Petersen

petersew@uni-duesseldorf.de

http://user.phil-fak.uni-duesseldorf.de/~petersen/Form_Begr/Form_Begr.html

Ordnungsrelationen: Fortsetzung

Definition 1 Sei (M, \leq) eine (partiell) geordnete Menge und K eine Teilmenge von M. Ein Element x von M ist

- eine obere Schranke von K, $g.d.w. \forall y \in K : y < x$;
- eine untere Schranke von K, $g.d.w. \forall y \in K : x \leq y$.

x heißt kleinste obere Schranke oder Supremum von K relativ zu M, wenn x eine obere Schranke ist und es keine obere Schranke y von K gibt mit $y \le x$ und $x \ne y$. Wir schreiben sup K oder $\bigvee K$ für das Supremum von K (lese \bigvee als 'join').

x heißt größte untere Schranke oder Infimum von K relativ zu M, wenn x eine untere Schranke ist und es keine untere Schranke y von K gibt mit $x \leq y$ und $x \neq y$. Wir schreiben inf K oder $\bigwedge K$ für das Infimum von K (lese \land als 'meet').

Wir schreiben $x \vee y$ statt $\bigvee \{x,y\}$ und $x \wedge y$ statt $\bigwedge \{x,y\}$.

Beispiele:

- 1. Für die linear geordnete Menge (\mathbb{R}, \leq) gilt: $\sup[1, 4] = 4$ und $\inf[1, 4] = 1$.
- 2. Für die partiell geordnete Menge $(\wp(M), \subseteq)$ mit $M = \{1, 2, 3, 4\}$ ist das Supremum von $K = \{\{1, 2\}, \{2, 4\}, \{1\}\}$ die Vereinigung aller Elemente von K, also sup $K = \{1, 2, 4\}$.

Das Infimum von K ist der Durchschnitt aller Elemente von K, also inf $K = \emptyset$.

Aufgaben:

1. Zeichne ein Hasse-Diagramm zur geordneten Menge

$$M = \Big(\big\{ \{1,2,3,4,5\}, \{1,2,3,5\}, \{1,3,4\}, \{2,4,5\}, \{1,2,3\}, \\ \{1,3\}, \{2,4\}, \{1,5\}, \{1,\}, \{3\}, \{4\}, \{5\}, \emptyset \big\}, \subseteq \Big).$$

2. Wähle drei 4-elementige Teilmengen von M und bestimme ihr Supremum und Infimum.

Verbandstheorie

Definition 2 (Verbände) Eine geordnete Menge $\mathcal{V} = (V, \leq)$ ist ein **Verband**, g.d.w. zu je zwei Elementen x und y aus V auch das Supremum von x und y $(x \vee y)$ und das Infimum von x und y $(x \wedge y)$ Elemente von V sind.

Definition 3 Ein Verband $\mathcal{V} = (V, \leq)$ ist ein **vollständiger Verband**, falls für alle $K \subseteq V$ gilt, $da\beta \bigvee K \in V$ und $\bigwedge K \in V$. Jeder vollständige Verband hat ein größtes Element $\bigvee V$, das **Einselement** $(\mathbf{1}_{\mathbf{V}})$ genannt, und ein kleinstes Element $\bigwedge V$, das **Nullement** $(\mathbf{0}_{\mathbf{V}})$ genannt. Die oberen Nachbarn des Nullelements nennt man die **Atome** und die unteren Nachbarn des Einselements die **Koatome** des Verbands.

Bemerkung:

- Jeder endliche Verband ist vollständig.
- Da $\bigwedge \emptyset = 1_V$ und $\bigvee \emptyset = 0_V$ gilt, gibt es keinen vollständigen Verband mit leerer Menge V.
- Die Ordnungsrelation kann aus \land und \lor wiedergewonnen werden: $x \le y \iff x = x \land y \iff x \lor y = y$
- \vee und \wedge sind assoziativ: $x \wedge (y \wedge z) = (x \wedge y) \wedge z$ und $x \vee (y \vee z) = (x \vee y) \vee z$.

Beispiele:

- 1. $(\wp(M), \subseteq)$ ist ein vollständiger Verband, \vee entspricht \cup und \wedge entspricht \cap .
- 2. $([2,5], \leq)$ ist ein vollständiger Verband.
- 3. (\mathbb{R}, \leq) ist ein Verband, aber nicht vollständig.
- 4. $(\{\{1,2\},\{2,4\},\{1\}\},\subseteq)$ ist kein Verband.

Begriffsverbände

Definition 4 Seien (A_1, B_1) und (A_2, B_2) zwei Begriffe eines formalen Kontextes mit $A_1 \subseteq A_2$ (äquivalent: $B_2 \subseteq B_1$), dann ist (A_1, B_1) ein **Unterbegriff** von (A_2, B_2) und (A_2, B_2) ein **Oberbegriff** von (A_1, B_1) . Man schreibt $(A_1, B_1) \leq (A_2, B_2)$ und nennt die Ordnung \leq die **Begriffsordnung**.

Theorem 5 (Hauptsatz der Formalen Begriffsanalyse) Für jeden formalen Kontext (G, M, I) bildet die assoziierte geordnete Menge $(\mathcal{B}(G, M, I), \leq)$ einen vollständigen Verband, der der **Begriffsverband** des formalen Kontextes genannt wird. In dem Begriffsverband sind Infimum und Supremum wie folgt beschrieben:

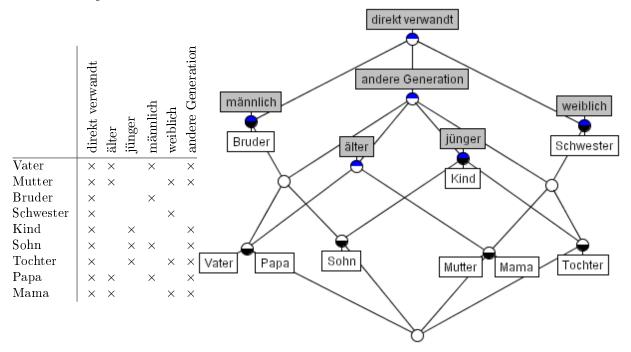
$$\bigwedge_{t \in T} (A_t, B_t) = \left(\bigcap_{t \in T} A_t, \left(\bigcup_{t \in T} B_t\right)''\right)$$

$$\bigvee_{t \in T} (A_t, B_t) = \left(\left(\bigcup_{t \in T} A_t \right)'', \bigcap_{t \in T} B_t \right)$$

Jeder vollständige Verband ist ein Begriffsverband.

Aufgaben:

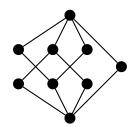
1. Kleiner Beispielkontext der Verwandtschaftsterme:



	Extension										Intension					
	Vater	Mutter	Bruder	Schwester	Kind	Sohn	Tochter	Papa	Mama	direkt verwandt	älter	jünger	männlich	weiblich	andere Generation	
В1	×	×	×	×	×	×	×	×	×	×						
$\overline{\mathrm{B2}}$		×		×			×		×	×				×		
В3	×		×			×		×		×			×			
$\overline{\mathrm{B4}}$	×	×			×	×	×	×	×	×					×	
$\overline{\mathrm{B5}}$	×	×						×	×	×	×				×	
$\overline{\mathrm{B6}}$					×	×	×			×		×			×	
$\overline{\mathrm{B7}}$		×					×		×	×				×	×	
$\overline{\mathrm{B8}}$	×					×		×		×			×		×	
B9	×							×		×	×		×		×	
B10		×							×	×	×			×	×	
B11						×				×		×	×		×	
$\overline{\mathrm{B}12}$							×			×		×		×	×	
B13										×	×	×	×	×	×	

- (a) Nach welchem Verfahren ist der Begriffsverband beschriftet?
- (b) Trage die Begriffsnummern aus der Begriffstabelle in das Diagramm ein.
- (c) Was könnten die unterschiedlichen Knotenarten des Diagramms bedeuten?

- 2. Wie ändert sich der Begriffsverband, wenn man
 - (a) das Merkmal 'älter' wegläßt?
 - (b) den Gegenstand 'Papa' wegläßt?
 - (c) den Gegenstand 'Kind' wegläßt?
 - (d) das Merkmal 'gleiche Generation' hinzunimmt?
 - (e) den Gegenstand 'ältere Schwester' hinzunimmt?
- 3. Ermittle einen möglichst "kleinen" (kleine Menge von Gegenständen und Merkmalen, kleine Inzidenzrelation) Kontext, der folgenden vollständigen Verband als Begriffsverband hat.



- 4. Beweise, daß die Menge aller Begriffe eines endlichen Kontextes (ein Kontext mit endlicher Merkmal- und Gegenstandsmenge) geordnet bezüglich der Begriffsordnung einen vollständigen Verband bildet.
- 5. Beschreibe ein systematisches Verfahren, wie man (möglichst effizient) die Menge aller Begriffe zu einem Kontext ermitteln kann.