Aufgabe 9:

Die Sprache $L = \{ww \mid w \in \{a, b\}^*\}$ ist nicht regulär.

Es gilt $L \cap L(a^*ba^*b) = L(a^nba^nb)$. Wäre L regulär, so müsste auch $L(a^nba^nb)$ regulär sein, da $L(a^*ba^*b)$ regulär ist und die Schnittmenge zweier regulärer Sprachen immer eine reguläre Sprache ist.

Als nächstes zeigen wir mit dem Pumpinglemma, dass $L(a^nba^nb)$ nicht regulär ist. Den Beweis führen wir, indem wir zeigen, dass die Annahme $L(a^nba^nb)$ sei regulär zu einem Widerspruch führt:

Im folgenden sei angenommen, dass $L(a^nba^nb)$ eine reguläre Sprache ist.

Das Pumpinglemma für reguläre Sprachen besagt, dass jedes genügend lange Wort w einer regulären Sprache, so in w=uvw zerlegt werden kann, dass jedes der Worte uv^iw ein Wort der Sprache ist. "Genügend lang" ist das Wort, wenn es mindestens so lang ist, wie der minimale endliche Automat, der die Sprache akzeptiert, Zustände hat. Da wir für $L(a^nba^nb)$ keinen endlichen Automaten angeben können, wissen wir nicht, wie lang genau ein "genügend langes" Wort sein muss und können den Beweis daher nicht an einem konkreten Beispielwort führen.

Sei $w \in L(a^nba^nb)$ ein beliebiges, genügend langes Wort und sei w = uvw eine beliebige Zerlegung, dann muss einer der folgenden Fälle gelten:

- **1. Fall.** v enthält ein b: Die Worte uv^iw enthalten für $i \geq 2$ mehr als 2 b's. Folglich gilt $uv^iw \notin L(a^nba^nb)$ für $i \geq 2$.
- **2. Fall.** v enthält kein b: Wenn v kein b enthält, enthält v nur a's. Somit sind in den Worten uv^iw für $i \geq 2$ die a-Blöcke unterschiedlich lang. Folglich gilt $uv^iw \not\in L(a^nba^nb)$ für $i \geq 2$.

Da es für w keine pumpbare Zerlegung gibt, kann $L(a^nba^nb)$ keine reguläre Sprache sein. Dies widerspricht unserer Annahme, dass $L(a^nba^nb)$ regulär ist. Es folgt, dass L keine reguläre Sprache ist.

Aufgabe 9 (Kurzform):

Angenommen, L ist regulär. Wegen $L \cap L(a^*ba^*b) = L(a^nba^nb)$ und $L(a^*ba^*b)$ regulär, muß auch $L(a^nba^nb)$ regulär sein.

Sei $w \in L(a^nba^nb)$ ein beliebiges, genügend langes Wort und sei w = uvw eine beliebige Zerlegung, dann:

- **1. Fall.** v enthält ein b: uv^iw enthält für $i \geq 2$ mehr als 2 b's. Also $uv^iw \not\in L(a^nba^nb)$ für $i \geq 2$.
- **2. Fall.** v enthält kein b: v enthält nur a's. Folglich sind die a-Blöcke in uv^iw für $i \geq 2$ unterschiedlich lang. Also $uv^iw \notin L(a^nba^nb)$ für $i \geq 2$.

Da es für w keine pumpbare Zerlegung gibt, kann $L(a^nba^nb)$ keine reguläre Sprache sein (Widerspruch!). Es folgt, dass L keine reguläre Sprache ist.