
The omplexity of linguistially motivated extensions oftree-adjoining grammarAnders SøgaardUniversity of Copenhagenanders�st.dk Timm LihteUniversity of Tübingentimm.lihte�uni-tuebingen.deWolfgang MaierUniversity of Tübingenwo.maier�uni-tuebingen.deAbstratThis paper proves the NP-hardness of three ex-tensions of tree-adjoining grammar (TAG): FO-TAG [2℄, RSN-MCTAG [6℄ and TT-MCTAG [7℄.The omplexities of these extensions have allbeen presented as open problems in the liter-ature. The extensions have been proposed tomodel srambling and free word order phenom-ena in languages suh as German, Korean andJapanese. It is shown that one of them also gen-erates the MIX language. Finally, some polyno-mial time fragments are de�ned.1 IntrodutionNatural language has been shown to ontain onstru-tions whih an not be adequately represented usingontext-free grammar (CFG), suh as ross-serial de-pendenies. While �rst shown to exist in Swiss Ger-man [12℄, they an also be found in Tagalog [8℄. Severalformalisms have been introdued that provide more ex-pressive power than CFG while staying omputation-ally tratable, i.e. while retaining polynomial reogni-tion. One of these formalisms is tree-adjoining gram-mar (TAG). Some knowledge of TAG is assumed inthis paper. Consult [5℄ otherwise for a nie introdu-tion. Informally, a TAG onsists of �nite sets of ter-minals and nonterminals and �nite sets of initial andauxiliary trees. Larger trees are derived by substitut-ing ↓-marked frontier nodes with trees or by adjoiningtrees (that have a root node and a ∗-marked frontiernode with the same nonterminal) to interior nodes.The language of a TAG is the set of strings that are inthe yield of trees that an be derived from an initialtree.[2℄ showed that TAG does not have the expressivepower neessary to apture srambling and free wordorder phenomena in languages suh as German, Ko-rean and Japanese. Here's an example from Korean:(1) jatongha-lular.def.a keu-kapro.3sg.nom surihakess-takorepair.infyakosokhaesstapromise.fin'He promises to repair the ar.'

In Korean, adjunts and arguments sramble. Inthis ase, an argument of the lower lause even appearsin the upper lause. The struture is thus disontinu-ous. Srambling over lause boundaries is sometimesreferred to as long-distane srambling. Suh long-distane srambling is beyond the expressive powerof TAG, but even srambling phenomena within thelause reeive rather unelegant analyses in TAG.ID/LP grammar was proposed by [11℄ for sram-bling and free word order within the lause. In ID/LPgrammar, the produtions of CFG are split into imme-diate dominane (ID) and linear preedene (LP). Forinstane, the prodution S → αβ is split into the (un-ordered) ID S → αβ and the LP α ≺ β. The LPs anbe relaxed or removed. In other words, free word or-der and srambling do not ompliate grammars, butsimplify them. ID/LP grammar still only generatesontext-free languages, but in fat the universal reog-nition problem beomes NP-hard. This was proven forthe fragment of ID/LP grammar with no LPs (UCFG)in [1℄ by an interesting appliation of the vertex overproblem; this problem is also used here to establishthe NP-hardness of FO-TAG, RSN-MCTAG and TT-MCTAG.The vertex over problem involves �nding the small-est set V ′ of verties in a graph D = 〈V, E〉 suh thatevery edge has at least one endpoint in the set. For-mally, V ′ ⊆ V : ∀{a, b} ∈ E : a ∈ V ′ ∨ b ∈ V ′. Theproblem is thus an optimization problem, formulatedas a deision problem:INSTANCE: A graph D = 〈V, E〉 and apositive integer k.QUESTION: Is there a vertex over of size
k or less for G?Say k = 2, V = {a, b, c, d}, E = {〈a, c〉, 〈b, c〉,

〈b, d〉, 〈c, d〉}, for instane. One way to obtain a ver-tex over is to go through the edges and underline oneendpoint of eah edge. If you an do that and onlyunderline two vertex symbols, a vertex over has beenfound. Sine |V | = 4, this is equivalent to leaving twovertex symbols untouhed. Consequently, the vertexover problem for this spei� instane is enoded bythis UCFG, where δ is a bookkeeping dummy symbol:



S → ρ1ρ2ρ3ρ4UUδδδδ
ρ1 → a|c
ρ2 → b|c
ρ3 → b|d
ρ4 → c|d
U → aaaa|bbbb|cccc|dddd
δ → a|b|c|d

ρi aptures the ith edge in E. The input string
ω = aaaabbbbccccdddd. One derivation tree in ourexample will have the form:

[[aaaa]U [bbbb]U [c](b,c)[c](a,c)[c](c,d)[c]δ
[d](b,d)[d]δ[d]δ[d]δ]S .Generally, the �rst prodution has as many ρi's asthere are edges in the graph, |V | − k many U 's and

|E| × |V | − |E| − |E| × (|V | − k) many δ's, i.e. thelength of the string minus the number of edges andthe extension of |V |−k many U 's. The ρi produtionsare simple, U extends into |E| many a's or b's andso on, and δ extends into all possible verties. Sinethe grammar and input string an be onstruted inpolynomial time from an underlying vertex over prob-lem 〈k, V, E〉, universal reognition of UCFG must beat least as hard as solving the vertex over problem.Sine the vertex over problem is NP-hard [4℄, the uni-versal reognition problem for totally unordered type2 grammars is therefore NP-hard. It is easy to see thatit is also in NP. Simply guess a derivation, linear in thesize of the string, and evaluate it in polynomial time.Several extensions, as already mentioned, have beenproposed for long-distane srambling. See [6℄ for apartial survey. Most proposals in one way or an-other relax the notion of immediate dominane be-tween mothers and daughters in trees. Note that im-mediate dominane is already relaxed in TAG, sinenew trees an be adjoined to daughter nodes.FO-TAG is probably the simplest proposal, as it isvery similar to ID/LP grammar. In variants of mul-tiomponent TAG (MCTAG), the relaxation of im-mediate dominane is obtained by splitting auxiliarytrees into smaller trees and dominane (not immedi-ate dominane) links. The grammar then onsists ofsets of trees rather than just elementary trees, exeptfor the initial trees. It is usually a restrition thatevery auxiliary tree in a set must be applied to thederived tree, in a single derivation step. In the ab-sene of any other restritions, the �xed reognitionproblem of (even lexialized) MCTAG an be shownto be NP-hard [10, 3℄. [3℄ proves the NP-hardness ofthe �xed reognition problem of a partiular grammarthat solves all instanes of the three-partition problemby aepting only some input.Several variants of MCTAG have appeared in thelast years, and their omplexities have been presentedas open problems. In this paper, our onern is withFO-TAG [2℄, RSN-MCTAG [6℄ and TT-MCTAG [7℄. Itseems that none of these extensions of TAG are ableto easily reonstrut the three-partition problem, butthey all have the power to solve the vertex over prob-lem. Or more aurately, for every instane of thevertex over problem, there is a polynomial (and lin-ear) translation into a grammar of one of these kindsand a string suh that the string is only reognized

by the grammar i� the soure problem instane has asolution. Sine the vertex over problem is known tobe NP-omplete, the universal reognition problems ofthe three extensions are thus NP-hard. It is trivial toshow that the extensions are also NP-omplete.2 FO-TAGFree order TAG (FO-TAG) was introdued in [2℄. Thede�nition is presented in De�nition 2.1.De�nition 2.1. G is a free order tree-adjoininggrammar i� G = 〈N, T, I, A, S〉 suh that G′ =
〈N, T, I, A, S〉 is a tree-adjoining grammar [5℄, exeptthat initial and auxiliary trees are now tuples of un-ordered trees and LPs of the form α ≺ β where
α, β ∈ N .The language of a FO-TAG is, as in the ase of TAG,the set of strings that are in the yield of the treesthat an be derived from an S-rooted initial tree byadjuntion and substitution.Example 2.2. FO-TAG does not seem to generatethe MIX language, but the totally unordered extensionof it does, i.e. if a language L is generated by a FO-TAG, the language generated by its totally unorderedextension is the set of all permutations of strings in
L. See [13℄ for the notion of total unordering. TheMIX language is onjetured not to be mildly ontextsensitive. It onsists of all strings in {abc}∗; that is,every string that onsists of the same number of a's,
b's and c's. To see this, onsider the auxiliary tree:Sa b  S∗This generates the language whose permutations isthe MIX language with an appropriate initial tree tobegin the derivation and an appropriate auxiliary treeto end it.For our NP-hardness proof, it is shown how to re-onstrut the vertex over problem in FO-TAG. Thetheorem is a trivial onsequene of the result in [1℄,sine every UCFG is also a FO-TAG.Theorem 2.3. The reognition problem of FO-TAGis NP-hard.Proof sketh 2.4. For eah problem instane D, k weonstrut a FO-TAG G = 〈N, T, I, A, S〉 and a string
σ suh that σ is in the language of G i� D, k has asolution. First σ is de�ned as the onatenation of
|E| many vi's for eah vi ∈ V . So for the instane
k = 2, V = {a, b, c, d}, E = {〈a, c〉, 〈b, c〉, 〈b, d〉, 〈c, d〉},for example, a possible string is aaaabbbbccccdddd. Itis then de�ned that the tuple of the elementary treeSU|V |−k ρ1 . . . ρ|E| δmwith m = |E| × |V | − |E| − |E| × (|V | − k). The
S-initial tree has |V |−k many U 's as daughters. Con-sequently, there are only k verties left to over thegraph. It should not be di�ult to see how the proofproeeds; it is, in all respets, analogous to the prooffor UCFG.



3 RSN-MCTAGRestrited multiomponent TAG with shared nodes(RSN-MCTAG) was introdued in [6℄. Its formal def-inition is presented in De�nition 3.1.De�nition 3.1. G is a restrited multiomponenttree-adjoining grammar with shared nodes i� G =
〈N, T, I, A,A, S〉 suh that G′ = 〈N, T, I, A, S〉 is atree-adjoining grammar [5℄, and where A ⊆ 2I∪A.The next step is to de�ne a relation on the derivationtree Rs for node-sharing. A derivation tree is a tuple
D = 〈Trees, Drvs〉, where Trees ⊆ (I ∪ A), and Drvs ⊆
Trees × Trees × GornAddrs, where GornAddrs is the setof Gorn addresses. Rs is de�ned:

Rs = {〈n1, n2〉 | n1, n2 ∈ Trees, n2is immediately dominated by n1or there are t1, . . . , tk ∈ Treessuh that t1is immediately dominated by
n1, n2 = tk and for all i,
1 ≤ i ≤ (k − 1) : 〈ti, ti+1, p

′〉 with tibeing an auxiliary tree with rootnote address p′}The language of a RSN-MCTAG is the set of stringsthat are in the yield of the trees that an be de-rived from an S-rooted initial tree by simultaneous ad-juntion and substitution of all elements of sets, withderivation tree D = 〈Trees, Drvs〉 suh that for every
{β1, . . . , βn} ∈ A, βi ∈ Trees, and there is a γ suhthat βi is immediately dominated by (is the daughterof) γ in the derived tree or linked to γ by a hain ofroot adjuntions. In other words, Rs(γ, βi). In addi-tion, at least one βj must be immediately dominatedby γ in the derivation tree. Due to the simultaneityonstraint, no two βi, βj an dominate eah other .Example 3.2. Neither RSN-MCTAG or SN-MCTAG[6℄, that is, RSN-MCTAG without the immediate dom-inane restrition on set appliation, generate the MIXlanguage. This is possible, however, if we give up theonstraint that no two βi, βj an dominate eah other.To see this, onsider the set:







Sa S* , Sb S* , S S* 



and the initial tree: S
ǫIt should be relatively easy to see that this generatesthe MIX language if the auxiliary trees in a set andominate eah other.For our NP-hardness proof, it is shown how to re-onstrut the vertex over problem in RSN-MCTAG:Theorem 3.3. The reognition problem of RSN-MCTAG is NP-hard.

Proof sketh 3.4. For eah problem instane D, k weonstrut a RSN-MCTAG G = 〈N, T, I, A,A, S〉 anda string σ suh that σ is in the language of G i� D, khas a solution. First σ is de�ned as the onatenationof |E| many vi's for eah vi ∈ V . So for the instane
k = 2, V = {a, b, c, d}, E = {〈a, c〉, 〈b, c〉, 〈b, d〉, 〈c, d〉},for example, a possible string is aaaabbbbccccdddd. Itis then de�ned that N = {D, U, S, e1, . . . e|E|, δ}. Foreah em = 〈ni, nj〉 ∈ E, singleton sets are introdued:

{

em

ni

} and {

em

nj

}For eah vi = V , singleton sets are introdued:
{ U

v
|E|
i

}The set in Figure 1 is then introdued.Finally, the S-initial tree is added:SS↓|E|×|V |The set in Figure 1 needs to saturate |V | − k many
U 's. Consequently, there are only k verties left toover the graph. Consequently, only the trees thatrelate edge nonterminal symbols ei with the terminalsthat are not used to build U 's an be build. In ourexample, this will be those with terminals c, d. The
δ-trees are just there for tehnial reasons.The reonstrution shows that the reognition prob-lem of RSN-MCTAG is NP-hard.The proof also applies to SN-MCTAG [6℄, of ourse.Moreover the proof is independent on onstraints suhas tree-loality and set-loality, sine the elementarytrees of eah set all apply, simultaneously, to the sametree and, therefore, the same set.4 TT-MCTAGMultiomponent TAG with tree tuples (TT-MCTAG)is introdued in [7℄. Its formal de�nition is presentedin De�nition 4.1.De�nition 4.1. G is a multiomponent tree-adjoininggrammar with tree tuples i� G = 〈N, T, I, A, T , S〉suh that G′ = 〈N, T, I, A, S〉 is a tree-adjoining gram-mar [5℄, and where T ⊆ (I ∪ A) × 2A suh that foreah 〈γ, {β1, . . . , βn}〉 ∈ T the frontier nodes of thedestination tree γ inlude at least one terminal sym-bol.The next step is to de�ne a relation on the deriva-tion tree Rs for node-sharing. This is just as inRSN-MCTAG. A derivation tree is a tuple D =
〈Trees, Drvs〉, where Trees ⊆ (I ∪ A), and Drvs ⊆
Trees × Trees × GornAddrs, where GornAddrs is the setof Gorn addresses.The language of a TT-MCTAG is the set of stringsthat are in the yield of the trees that an be derived
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Fig. 1: A set in the RSN-MCTAG reonstrution of the vertex over problem. m = |E|×|V |−|E|−|E|×(|V |−k).from an S-rooted initial tree by adjuntion and substi-tution with derivation tree D = 〈Trees, Drvs〉 suh thatfor every 〈γ, {β1, . . . , βn}〉 ∈ T , βi ∈ Trees, and either
βi is substituted for a frontier node in γ, or adjoinedto an interior node of γ or Rs(γ, βi).Example 4.2. TT-MCTAG also generates the MIXlanguage. To see this, onsider the tree tuples:

〈 Sa S* , 





Sb S* , S S* 





〉

〈 Sb S* , 





Sa S* , S S* 





〉

〈 S S* , 





Sa S* , Sb S* 





〉and the tree tuple:
〈 S

ǫ
, ∅

〉It should be relatively easy to see that this generatesthe MIX language. The saturation requirement in TT-MCTAG ensures that you use up all the trees in thetuples, whenever destination trees are introdued.For our NP-hardness proof, it is shown how to re-onstrut the vertex over problem in TT-MCTAG:Theorem 4.3. The reognition problem of TT-MCTAG is NP-hard.Proof sketh 4.4. For eah problem instane D, k weonstrut a TT-MCTAG G = 〈N, T, I, A, T , S〉 anda string σ suh that σ is in the language of G i�
D, k has a solution. First σ is de�ned as the on-atenation of |E| many vi's for eah vi ∈ V , pre-�xed by the symbol †. So for the instane k =
2, V = {a, b, c, d}, E = {〈a, c〉, 〈b, c〉, 〈b, d〉, 〈c, d〉}, forexample, a possible string is †aaaabbbbccccdddd. It isthen de�ned that N = {U, S, e1, . . . e|E|, δ}. For eah
em = 〈ni, nj〉 ∈ E, tree tuples are introdued:
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〉For eah vi = V , tree tuples are introdued:
〈 U
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〉

Finally, the tree tuple in Figure 2 is introdued.The S-initial tree needs to saturate |V | − k many
U 's. Consequently, there are only k verties left toover the graph. Consequently, only the edge-tuples� that is, the ones with destination trees with interiornodes ρi � with the terminals that are not used tobuild U 's an be build. In our example, this will bethose with terminals c, d. The δ-trees are just therefor tehnial reasons.The reonstrution shows that the reognition prob-lem of TT-MCTAG is NP-hard. It is, as already said,trivial to show NP-inlusion, sine derived trees arelearly polynomial in the length of the input. Conse-quently, it is possible to guess a model and evaluate itin polynomial time.5 Polynomial time fragmentsThis setion de�nes some fragments of the above ex-tensions whose reognition problems an be solved inpolynomial time. Our �rst fragment is FO-TAG(k).An FO-TAG is a FO-TAG(k) i� a disontinuous tu-ple, that is, a tuple in whih the linearization of thetree is not fully spei�ed by the LPs, has a yield of atmost k terminals.Theorem 5.1. The reognition problem of FO-TAG(k) is in P.Proof sketh 5.2. Consider the simpler ase ofUCFG(k), de�ned in an analogous fashion. Our �rststep is to de�ne a hart. See [13℄ for a similar onstru-tion. If you have a UCFG G = 〈N, T, P, S〉 and somestring ω1 . . . ωn. Construt Gω = 〈Nω, Tω, Pω , {1Sn}〉suh that

Tω = {ω1, . . . , ωn}and, reursively(a) (ωi ∈ Tω and A → ωi ∈ P ) =⇒ (iAi ∈
Nω and iAi → ωi ∈ Pω)(b) (iBj ,j+1 Ck, . . . ,m−1 Xm ∈ Nω and A →
{B, C, . . . , X}) =⇒ (iAm ∈ Nω ∧ iAm →
{iBjj+1Ck, . . . ,m−1 Xm ∈ Pω)The upper bound on |Pω| is roughly:
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2 spans to assignone of |N | nonterminals, and that eah nonterminal inthe hart with span of length n− i may orrespond to,roughly,
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Fig. 2: The S-initial tree in the TT-MCTAG reonstrution of the vertex over problem. m = |E|× |V |− |E|−
|E| × (|V | − k).

0≤j
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n−(i+j)

× (n − i) × (n − (i + j)))produtions, sine you an partition the span in
(n − i) × (n − (i + j)) and assign N (n−(i+j)) manyombinations of nonterminals for eah partitioning.In UCFG(k), this number is muh lower, namely
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+
k<i
X

i<n

(|N |3 × (n − i))if it is assumed that any rule that spans more than
k positions is binary. The bound implies parsing in
O(n3). This re�ets that a k bound on yield meansa k′ bound on arity, and if there is suh a bound, theunderlying CFG an be onstruted in O(k′!) time. InFO-TAG(k), the same e�et is seen on harts. See [14℄for a hart-based parsing algorithm for ordinary TAG.It is easy to see that sine harts are polynomial in thelength of the string, so is the time omplexity of thereognition problem.Similarly, a k bound on the number of nodes in un-ordered elementary trees will allow you to generate theunderlying TAG in O((k − 1)!). [6℄ de�nes a polyno-mial fragment of RSN-MCTAG (RSN-MCTAG(k)) byadding a restrition that roughly means you an onlyhave k elementary trees between elements of tree sets.A similar onstraint an be imposed on TT-MCTAG. Or we an impose a k-gap degree onstraint,as in non-projetive dependeny parsing [9℄. In fat,the two onstraints are intimately related. If there isa k bound on the elementary trees that an our be-tween elements of tree sets, there is also a k′ bound,linear in k, on the gap degree.FO-TAG(k) is weakly equivalent to TAG and FO-TAG, but the k-onstraint is not harmless, from a lin-guisti point of view, sine intra-lausal unordering isrelevant for arbitrary yields. The seond proposal, torestrit the number of nodes in unordered elementarytrees, seems more realisti; most grammars have rea-sonable bounds on the number of nodes. The sameapplies to RSN-MCTAG(k). [9℄ shows that a low gapdegree is realisti for a number of languages.6 ConlusionIt was shown that FO-TAG [2℄, RSN-MCTAG [6℄and TT-MCTAG [7℄, three extensions of tree-adjoininggrammar that are suited for analyzing srambling andfree word order phenomena in languages suh as Ger-man, Korean and Japanese, have NP-hard universalreognition problems. All three extensions are also

NP-omplete, but only one of them, TT-MCTAG,generates the MIX language. Some polynomial timefragments were de�ned. The NP-hardness proofs im-ply that tree-loal MCTAG is NP-hard, while weaklyequivalent to TAG. Consequently, any translation fromtree-loal MCTAG into TAG is exponential. This mir-rors the relation between ID/LP grammars and CFG.Referenes[1℄ E. Barton. The omputational di�ulty of ID/LP parsing. InProeedings of the 23rd Annual Meeting of the Assoiationfor Computational Linguistis, pages 76�81, Chiago, Illinois,1985.[2℄ T. Beker, A. K. Joshi, and O. Rambow. Long-distane sram-bling and tree adjoining grammars. In Proeedings of the5th Conferene of the European Chapter of the Assoiationfor Computational Linguistis, pages 21�26, Berlin, Germany,1991.[3℄ L. Champollion. Lexialized non-loal MCTAG with domi-nane links is NP-omplete. In Proeedings of Mathematisof Language 10, Los Angeles, California, 2007. To appear.[4℄ M. Garey and D. Johnson. Computers and intratability. W.H. Freeman & Co., New York, New York, 1979.[5℄ A. K. Joshi and Y. Shabes. Tree-adjoining grammars. InG. Rozenberg and A. Salomaa, editors, Handbook of FormalLanguages, volume 3, pages 69�124. Springer, Berlin, Ger-many, 1997.[6℄ L. Kallmeyer. Tree-loal multiomponent tree-adjoininggrammars with shared nodes. Computational Linguistis,31(2):187�225, 2005.[7℄ T. Lihte. An MCTAG with tuples for oherent onstrutionsin German. In Proeedings of the 12th Conferene on FormalGrammar, Dublin, Ireland, 2007. To appear.[8℄ A. Malahlan and O. Rambow. Cross-serial dependeniesin tagalog. In Proeedings of the Sixth International Work-shop on Tree Adjoining Grammar and Related Frameworks(TAG+6), pages 100�104, Venie, Italy, 2002.[9℄ J. Nivre. Constraints on non-projetive dependeny parsing.In 11th Conferene of the European Chapter of the Asso-iation for Computational Linguistis, pages 73�80, Trento,Italy, 2006.[10℄ O. Rambow and G. Satta. Formal properties of non-loality.In Proeedings of the Seond International Workshop on TreeAdjoining Grammar and Related Frameworks (TAG+2),Philadelphia, Pennsylvania, 1992.[11℄ S. Shieber. Diret parsing of ID/LP grammars. Linguistisand Philosophy, 7:135�154, 1984.[12℄ S. Shieber. Evidene against the ontext-freeness of naturallanguage. Linguistis and Philosophy, 8:333�343, 1985.[13℄ A. Søgaard. Polynomial harts for totally unordered languages.In Proeedings of the 16th Nordi Conferene of Computa-tional Linguistis, pages 183�190, Tartu, Estonia, 2007.[14℄ K. Vijay-Shanker and D. Weir. Parsing some onstrained gram-mar formalisms. Computational Linguistis, 19(4):591�636,1993.


