Tree Adjoining Grammar
TuLiPA and the lexion

The missing pieces

Laura Kallmeyer & Timm Lichte

HHU Diisseldorf

WS 2012
19.12.2012

TuLiPA and the lexicon 1

The situation

XMG-compiler
compiled metagrammar

metagrammar

TuLiPA and the lexicon 2

“implementational
cycle”

compiled metagrammar
2-layered lexicon TuLiPA-parser parsing results

~

input sentence

TuLiPA and the lexicon 5]

A 2-layered lexicon

loves
“morphological lexicon”
love
i “lemma lexicon”
Tnx0Vnx1

The morphological lexicon and the lemma lexicon are compiled
using lexConverter (as a part of LEX2ALL).

TuLiPA and the lexicon 4

A 2-layered lexicon - 2 sources for ambiguity

flies eats
fly-v fly-n eat
Tnx0V alphaN Tnx0V Tnx0Vnxl
TuLiPA and the lexicon 5

A 2-layered lexicon

A 2-layered lexicon

Morphological lexicon

maps an (inflected) token to some base form (= lemma), while
preserving morphological information in a feature structure.

loves love [pos=v; num=sing; pers=3;]
Peter Peter [pos=n; num=sing; pers=3; case=nom|acc;]

Interface with tree templates:
Feature unification during lexical insertion

TuLiPA and the lexicon 6

Lemma lexicon

maps a lemma onto tree tuple families, while also containing selectional
restrictions (e.g., case assignment).

*ENTRY: love

*CAT: v

*SEM:

*ACC: 1

*FAM: Tnx0Vnx1
*FILTERS: []

*EX:

*EQUATIONS:
NPargl -> case = nom
NParg2 -> case = acc
*COANCHORS:

Interface with tree templates:
EQUATIONS — nodes of tree templates (via name property)
FILTERS — tree templates (via interface expressions)

TuLiPA and the lexicon 7

Tibingen Linguistic Parsing Architecture (TuLiPA)

TuLiPA uses Range Concatenation Grammar (RCG) as a pivot
formalism. J

Components:
© TAG-to-RCG converter (on-line)
© RCG parser — RCG derivation forest — TAG derivation forest

© Parse viewer (derived tree, derivation tree, dependency view,
semantic representation)

Availability of TuLiPA:
written in Java and released under the GNU GPL
(http://sourcesup.cru.fr/tulipa/)

TuLiPA and the lexicon 8

TuLiPA - Range Concatenation Grammars (RCG)

Range Concatenation Grammar (RCG)

A(X1X2,X3) = B(Xz) C(X],X::,)

A, B, C: predicates
Xi, Xo, X3: range variables (instantiated with substrings of the string)

Example:

NP (Peter) — €
NP(Susan) — e
V(loves) — €

TuLiPA and the lexicon 9

TuLiPA - Range Concatenation Grammars (RCG)

TuLiPA - Why RCG?

Simple RCG

@ non-combinatorial: each argument on the RHS of a clause
consists of a unique variable!
NOT: A(XY,Z) — B(Y) C(X2)

@ linear: each variable appears at most once in the LHS or RHS
of a clause!
NOT: A(XYX,Z) — B(Y) C(X,2)

@ non-erasing: every variable in the LHS of a clause is also in
its RHS!

NOT: A(XY,Z) — B(Y) C(X)

v

TuLiPA and the lexicon 10

RCG is useful, because:

@ it has attractive formal properties (polynomially parsable, full
expressive power of MCS-languages);

@ there exist parsing algorithms.

= Parser can be reused for other mildly context-sensitive
formalisms!

NB: RCG properly includes MCS. We use a restricted RCG, called
simple RCG, that is included in MCS.

TuLiPA and the lexicon 11

TuLiPA - From TAG to RCG

T1: S(O)
Lo NPyl VP, Ro
51 L2 loves NP(22) i, R2
VAN
S22

Tl(l_o 51 L2 loves 522 R2 Ro) —
adjs,(Lo, Ro) subnp,(S1) adjvp,(L2, R2) subnp,,(S22)

adjs,(X,Y) — T2(X,Y)

TuLiPA and the lexicon 12

The last slide

Adjacent topics:

@ parsing techniques
ways to extend grammars and lexica automatically
coverage testing with testsuits (e.g. TSNLP)

°
°
@ adding semantics
°

TuLiPA and the lexicon 13

