
Tree Adjoining Grammars
Overview

Laura Kallmeyer & Timm Lichte

HHU Düsseldorf

WS 2012

10.10.2012

Overview 1/11

The general setting

Grammar/
linguistic theory:

rules for well-formed
structures of natural
language

Grammar formalism:

mathmatically concise description
language

Tree Adjoining Grammar (TAG)

Implementation:

(the result of) a process to translate sth.

into a specific grammar formalism

into a specific input format for a parser

into . . .

Overview 2/11

Two meanings of “implementation”

grammar/
linguistic theory

“implementation”

specifications
in accordance with a
grammar formalism

evaluation
of the theory

As is frequently pointed out but cannot be overemphasized, an important

goal of formalization in linguistics is to enable subsequent researchers to
see the defects of an analysis as clearly as its merits; only then can

progress be made efficiently. (Dowty, 1979, 322)

Overview 3/11

Two meanings of “implementation”

grammar/
linguistic theory

“implementation”

specifications
in accordance with a
grammar formalism

“implementation”

evaluation
of the theory

grammar resource

computational
application

Overview 4/11

The landscape of Grammar Formalisms (1)

generative rewriting formalisms:

Context-Free Grammar (CFG)
Tree-Adjoining Grammar (TAG)
Lexical Functional Grammar (LFG)
Transformational Grammar (TG/GB), Minimalism

proof-theoretic formalisms:

Combinatorial Categorial Grammar (CCG)

model-theoretic/constraint-based formalisms:

Head-Driven Phrase Structure Grammar (HPSG)

Overview 5/11

The landscape of Grammar Formalisms (2)

Within Chomsky hierarchy:'

&

$

%

'

&

$

%

'

&

$

%

#

"

!

�
�

�

type 3 / regular

FSA

type 2 / context-free

CFG

mildly context-sensitive

TAG, CCG, Minimalist Grammar

type 1 / context-sensitive

type 0 / recursively enumerable (or beyond)

HPSG, LFG, TG

Overview 6/11

Tree-Adjoining Grammar - Basics

A Tree Adjoining Grammar (TAG) is a set of elementary trees:

a finite set of initial trees

a finite set of auxiliary trees

E.g.:

VP

ADV VP*

easily

VP

NP↓ VP

V NP↓

repaired

Combinatorial operations:

substitution: replacing a non-terminal leaf with an initial tree

adjunction: replacing an internal node with an auxiliary tree

Overview 7/11

Tree-Adjoining Grammar - Example

NP

Peter

VP

NP↓ VP

V NP↓

repaired

NP

the fridgeVP

ADV VP*

easily

derived tree derivation tree
VP

NP VP

Peter ADV VP

easily V NP

repaired the fridge

repaired

Peter

1

easily

2

the fridge

22

Overview 8/11

Tree-Adjoining Grammar - Basics

TAGs are mildly context-sensitive:

1) Polynomial time parsing complexity

2) Generation of limited crossing dependencies

3) Constant growth property (semilinearity)

Mild context-sensitivity characterizes the generative capacity
needed for the analysis of natural language syntax.

Large TAG grammars:

English and Korean (XTAG, UPenn)

French TAG (Benoit Crabbé’s PhD-thesis)

German (GerTT)

. . .

Overview 9/11

Two ways of grammar implementation with TAG

1) XTAG tools (UPenn)

parser, editor, viewer, . . .

2) XMG + TuLiPA

XMG: eXtensible MetaGrammar (Duchier et al, 2004)
TuLiPA: Tübingen Linguistic Parsing Architecture
(Parmentier et al, 2008)

Overview 10/11

Inside and outside this lecture

What we are going to cover:

1. Grammar formalism: Tree Adjoining Grammar (TAG)
2. Phenomena + analysis from the XTAG grammar

(syntax, few semantics)
3. Implementation: XTAG tools, XMG + TuLiPA

What is not part of our concerns in this lecture:

pragmatics, morphology, phonetics/phonology , . . .
Head Driven Phrase Structure Grammar (HPSG),
Combinatorial Categorial Grammar (CCG),
Lexical Functional Grammar (LFG),
Transformational Grammar (GB), Minimalism
corpus-driven approaches (quantitative linguistics)

Overview 11/11

