Grammar Implementation with TAG
TAG with Feature Structures

Timm Lichte
HHU Diisseldorf

SS 2011
20.04.2011

TAG with Feature Structures 1

Why feature structures?

Outline

© Why feature structures?
© Basics of feature structure logic
© Feature Structure based TAG (FTAG)

TAG with Feature Structures 2

Why feature structures? Agreement

Idea: Instead of atomic categorial symbols, feature structures are
used as non-terminal nodes.

Two reasons with respect to TAG:
@ generalizing agreement (via underspecification)

@ modelling adjunction constraints

= smaller grammars that are easier to maintain

TAG with Feature Structures 3

Example without feature structures:
S S

T — T
NPpI/nom VP NP—\3/sg/nom V.P
A

NPpI/acc NPpl/nom ’’’’’ - Vi V—\3/sg
\
leak

\
grammars grammars leak

— The generalization that the finite verb and its subject agree in

number and person is not captured.
— Every morphological alternative gives rise to a new elementary

tree!

TAG with Feature Structures 4

Why feature structures? Adjunction constraints

Why feature structures? Combining the two

Example without feature structures:

S
Bis NP VPOA({ﬁ;.,ﬁareﬂbu..w-)
" ’
VP -~
/\ /,/’, V
vV VP*--- | .
| leaking

= The generalization that some form of the auxiliary to be needs
to be adjoined to leaking is not captured.

TAG with Feature Structures 5

Feature structures - Basics (1)

Things get even worse when combining agreement with
adjunction constraints:
@ If leaking requires a singular auxiliary to adjoin at the VP

node, then the subject must be NP3 /5 /nom-
S

/\
NP3/sg/nom VPOA({Bis,ﬁwas,---})
|

\

|
leaking

o If leaking requires a plural auxiliary to adjoin at the VP node,
then the subject must be NP/ pom.
S

///\
NPpI/nom VPOA({ﬁareaﬁwerey“'})
/

Vv

l
leaking

TAG with Feature Structures 6

Feature structures - Basics (2)

attr; valg {<attr1 ,va|1 >, <attry,vals >,
attrz valz ..., <attrpval, >}

attr, valp

AL B, iff

i C:f.
subsumption L if t € A, then t € B.

AL B = C, iff
unification U :| C is the smallest feature structure such that
AC Cand BLC C.

Note: We are using only untyped feature structures!

TAG with Feature Structures 7

Feature structures as values:

@ non-recursive: num sg
pers 1
agr 3rdsing -
gen neuter

@ recursive: l:subca.t <{subcat [H>]

FTAG uses non-recursive feature structures!

TAG with Feature Structures 8

Feature structures - Basics (3)

Feature structures - as tree nodes in a TSG

Re-entrancies (or “links”):

@ boxed numbers ([, [2], ...)

@ within feature structures:

attr; [attr; [1lval; {attrl [attrz mﬂ
attro [1] attrp
FTAG uses acyclic re-entrancies! J

@ between feature structures (in a tree):

T

[attr1 |I|] [attrl]

TAG with Feature Structures 9

FTAG (1)

e

cat np [cat Vp]
agr [
case nom .
cat np
A
num plur L cat v
agr |per 3 agr [3rdsing —]
3rdsing - ’
leak
grammars

@ Agreement properties can be undespecified.

@ When combining two trees, the feature structures of the
participating nodes are unified.

@ TSG: substitution ~ unification of leaf nodes and root nodes

TAG with Feature Structures 10

FTAG (2): Adjunction constraints

Feature-structure based TAG (FTAG): Vijay-Shanker & Joshi
(1988).

Modelling adjunction constraints requires to split the feature
structure of nodes:

@ top features: “what the node represents in the surrounding
structure”

@ bottom features: “what the tree below the node represents”

In the final derived tree, top and bottom unify. J

TAG with Feature Structures 11

Adjunction constraints are encoded in the following way:

@ SA: top and bot are unifiable.

[cat vp)
[cat vp)

@ OA + SA: feature mismatch between top and bot
cat vp
mode ind
cat vp
mode ger

@ NA: top and bot are unifiable, but there is no auxiliary tree in
the grammar that can be unified with top and bot.

TAG with Feature Structures 12

FTAG (3): Agreement and adjunction constraints FTAG (4): Unification with top-bottom feature structures

Example for top-bottom feature structures: Unification during derivation:

@ Substitution: the top of the root of the rewriting tree unifies

cat
S

with the top of the substitution node

t . . L. .
cat vp cab s @ Adjunction: the top of the root of the rewriting tree unifies
moder ind /\ with the top of the adjunction site, and the bottom of the foot
- EZ;“ ;g cat mp| [cat vp o.f the rewriting tree unifies with the bottom of the adjunction

3rdsing -+ agr agr site.
& mode ind [t-top] -~ _
[cat vp] cat vp [r-bot]
/\ mode ger
t t
[ca V:| [ca Vp:l [Cat v]
[cat v] cat vp
mode ger [Cat V] *
[f-top]
p I‘([f—bot]“'//
i eakin, . . .
s g @ In the final derived tree, top and bottom unify for all nodes.
TAG with Feature Structures 13 TAG with Feature Structures 14
FTAG (3) FTAG (4)
Example: Example: [Cat S]
[ca.t S]
[cat S]
/\
[cat S] cat np cat vp
agr mode ind
cat vp /\ fum 58
rﬁO(ie ind cat np cat vp agr per 3
: __|agr_-E-f> |agr 3rdsing +
i S8 mode ind
agr per 3 [cat VP]
3rdsing + > cat vp o
mode ger
[cat Vp] [cat V] [cat Vp]
/\ [cat v] [cat V] cat vp
* , mode ger
[ca,t V] [cat Vp] [cat V] |
[ca,t V] |:cat Vp:|<// ‘ is [cat V]
mode ger H
g leaking [cat V]
|
is leaking
TAG with Feature Structures 16

TAG with Feature Structures

15

FTAG (6): Adjunction constraints (NA)

@ Features must be chosen in a way that no unification with
feature structures of auxiliary trees is possible (and therefore
no adjunction).

FTAG (5)
Example: [cat s]
[cat s]
/\
l:cat np:| cat vp
agr mode ind
é A num Sg
P agr [1]{ per 3]
L . 3rdsing +
, [cat Vp]
cat np | — T~
num plur [cat V] [cat Vp]
agr |:per 3 } [cat v |:cat Vp:|
3rdsing - mode ger
t np I
[Ca] is [cat V:|
grammars [cat v]
leal‘(ing
TAG with Feature Structures 17
FTAG (7)

@ Example: FTAG for the copy language.

[adjtop no]
[

adjbot yes]

[cat s] aﬂ' s]
et o] [

cat s]

[adjtop yes]
[adjbot no]

TAG with Feature Structures

Summary

€ T l*

[adjtop no]
[adjbot yes]

5 e
eat o]

a {adjtop yes] b

[adjbot no]

18

LTAG feature structures are restricted; there is only a finite set of
possible feature structures (given finite sets of features and

values, and non-recursivity).

Therefore, the following can be shown:

For each FTAG there exists a weakly equivalent TAG with
adjunction constraints and vice versa. The two TAGs generate even
the same sets of trees, only with different node labels.

TAG with Feature Structures

19

@ Feature structures as nodes allow to abstract away from
agreement properties by underspecification. Linguistic
generalizations can be expressed more conveniently.

@ Adjunction constraints can be encoded into feature structures.

@ The feature structures of FTAG do not add expressive power,
hence FTAG and TAG are weakly equivalent.

TAG with Feature Structures

20

