
Grammar Implementation with TAGMotivation for TAGTimm LihteHHU DüsseldorfSS 201113.04.2010
Motivation for TAG 1

Outline
1. Why CFG is not enough2. Tree Substitution Grammars3. Tree Adjoining GrammarsAdjuntion and substitutionAdjuntion onstraints

Motivation for TAG 2

Why CFG is not enough
... for treating natural language:1. only atomi non-terminals2. only weak lexialization (lexialization hallenge)3. expressive power is too low (expressivity hallenge)

Motivation for TAG 3

Why CFG is not enough (1) - Atomi non-terminalsS → NP VP NP → John NP → MaryVP → V VP → V NP V → sleeps V → likesPossible derivation:S ⇒ NP VP ⇒ John VP ⇒ John V ⇒ John sleepsS ∗

⇒ John likes MaryS ∗

⇒ John sleeps MaryHow to treat subategorization frames, number agreement, andase marking?(1) a. Kim depends on Sandy.*Kim depends Sandy.*Kim depends.b. *The hildren depends on Sandy.. Kim depends on her/*she.Motivation for TAG 4

Why CFG is not enough (1)How to treat subategorization frames, number agreement, andase marking?
=⇒ enode the neessary information into the non-terminalsymbolsS → NP3sg/nom VP3sg/itr S → NP3sg/nom VP3sg/trVP3sg/itr → V3sg/itr VP3sg/tr → V3sg/tr NP3sg/aNP3sg/nom → John NP3sg/a → MaryV3sg/itr → sleeps V3sg/tr → likesS ∗

⇒ John likes MaryS ∗

⇒ John sleepsDrawbak: Every possible ombination of subategorization frame,number agreement, and ase marking neessitates its own rule (letalone the number of non-terminal symbols).Motivation for TAG 5

Why CFG is not enough (1)Example from German: NP → D N (determiner noun pairs)Müller(2007) presents a CFG with 48 non-terminal symbols and 24rules!NP3sg/nom → Dfem/sg/nom Nfem/sg/nomNP3sg/nom → Dmas/sg/nom Nmas/sg/nomNP3sg/nom → Dneu/sg/nom Nneu/sg/nomNP3pl/nom → Dfem/pl/nom Nfem/pl/nomNP3pl/nom → Dmas/pl/nom Nmas/pl/nomNP3pl/nom → Dneu/pl/nom Nneu/pl/nom. . .
=⇒ grammar writing is tedious and error prone
=⇒ generalizations are hardly expressibleRemedy: feature strutures instead of atomi non-terminalsymbols, uni�ation, underspei�ationMotivation for TAG 6

Why CFG is not enough (2) - Only weak lexializationLexializationIn a lexialized grammar, eah element of the grammar ontains atleast one lexial item (terminal symbol).G1: S → SS , S → aG2: S → aS , S → aComputationally interesting: the number of analyses for asentene is �nite (if the grammar is �nite of ourse).Linguistially interesting: eah lexial item omes with thepossibility of ertain partial syntati onstrutions, thereforeone would like to assoiate it to a set of substrutures.Motivation for TAG 7

Why CFG is not enough (2)Lexializing a CFGGreibah normal form: A → aB1...Bk (k ≥ 0)weak lexialization: string language is preservedstrong lexialization: tree struture is preservedQuestion: an CFGs be lexialized suh that the set of treesremains the same (strong lexialization)?Answer: No. Only weak lexialization (same string language).G1: S → SS , S → aG2: S → aS , S → aG1 annot be strongly lexialized with some �nite CFG, e.g. G2.Motivation for TAG 8

Why CFG is not enough (3) - Low expressive powerQuestion: Are CFGs powerful enough to desribe all naturallanguage phenomena?Answer: No.Example: ross-serial dependenies in Duth and in SwissGerman(1) ... dat Wim Jan Marie de kinderen zag helpen leren zwemmen... that Wim Jan Marie the hildren saw help teah swim`... that Wim saw Jan help Marie teah the hildren to swim'A formalism that an generate ross-serial dependenies must beable to generate the opy language {ww |w ∈ {a, b}∗}.But: The opy language is not ontext-free.Motivation for TAG 9

Tree Substitution Grammar (TSG)a tree rewriting version of CFGweakly equivalent generative apaityA CFG-prodution orresponds to a TSG-tree with the LHS asroot and the RHS as daughters.Applying a CFG-prodution orresponds to substituting anon-terminal leaf for a new tree.S → NP VPNP → JohnVP → VV → sleeps =⇒ NPJohn SNP VP VPV VsleepsMotivation for TAG 10

Tree Substitution Grammar (2)
A Tree Substitution Grammar (TSG) is a triple G = 〈N,T , I 〉suh thatT and N are disjoint alphabets, the terminals andnonterminals, andI is a �nite set of initial trees.The trees an be ombined into larger trees by substitution.The tree language of a TSG is the set of trees generated in thisway that do not ontain any remaining non-terminal leaves.

Motivation for TAG 11

Tree Substitution Grammar (3)Some important fats:TSG is weakly equivalent to CFG (same string language).TSG is not powerful enough to desribe ross-serialdependenies.It is not possible to �nd a strongly equivalent (same trees)lexialized TSG for eah CFG.S → SSS → a S Sa S Sa
=⇒ Solution: adjuntion operation and adjuntion onstraints!Motivation for TAG 12

Tree Adjoining Grammar (TAG)TAG = TSG + adjuntion + adjuntion onstraintsThe de�nition of TAG goes bak to Joshi et al. (1975).TAG is among the most frequently used grammar formalismsin omputational linguistis.TAG is interesting both for its omputational properties(mildly ontext-sensitivity) and for its linguisti appliations.There are large overage TAG grammars for English (XTAG,Philadelphia) and Frenh (FTAG, Paris).
Motivation for TAG 13

Tree Adjoining Grammar - Adjuntion (1)Rewriting operations:substitution: replaing a leaf with a new tree.adjuntion: replaing an internal node with a new tree.Trees that may adjoin are alled auxiliary trees and have a speialleaf, the footnode (marked by *). After adjuntion, the subtreebelow the target node appears below the footnode.Example: VPADV VP*sometimesThe root node and the footnode are required to arry the samelabel. The path from the root node to the footnode is alled thespine. Motivation for TAG 14

Tree Adjoining Grammar - Adjuntion (2)(2) John sometimes laughs
NPJohn

SNP VPVPADV VP∗ Vsometimes laughsderived treelaugh[1, john][2, sometimes]: SNP VPJohn ADV VPsometimes VlaughsMotivation for TAG 15

Tree Adjoining Grammar - Adjuntion (3)A Tree Adjoining Grammar (TAG) is a quadrupleG = 〈N,T , I ,A〉 suh thatT and N are disjoint alphabets, the terminals andnonterminals,I is a �nite set of initial trees, andA is a �nite set of auxiliary trees.The trees in I ∪ A are alled elementary trees.G is lexialized i� eah elementary tree has at least one leaf with aterminal label (LTAG).
Motivation for TAG 16

Tree Adjoining Grammar - Adjuntion (4)A derivation starts with an initial tree.In a �nal derived tree, all leaves must have terminal labels:Let G = 〈I ,A,N,T 〉 be a TAG. Let γ and γ
′ be �nite trees.

γ ⇒ γ
′ in G i� there is a node position p and an instane γ

′0of a tree (possibly derived from some) γ0 ∈ I ∪ A suh that
γ
′ = γ[p, γ0].
∗

⇒ is the re�exive transitive losure of ⇒.The tree language of G is LT (G) := {γ | there is an α ∈ Isuh that α
∗

⇒ γ and all leaves in γ have terminal labels}.
Motivation for TAG 17

Tree Adjoining Grammar - Lexialization hallengeLTAGs strongly lexialize CFGs and TAGs.Example:S → SSS → a is strongly equivalent with S Sa S* SaSS SS S S Sa a a a =⇒

Sa SS* Sa SS* Sa SS* SaMotivation for TAG 18

Tree Adjoining Grammar - Adjuntion onstraints (1)TAG as de�ned above are more powerful than CFG but they annotgenerate the opy language.In order to inrease the expressive power, adjuntion onstraints areintrodued that speify for eah node1 whether adjuntion is mandatory and2 whih trees an be adjoined.
Motivation for TAG 19

Tree Adjoining Grammar - Adjuntion onstraints (2)
A TAG with adjuntion onstraints is a tuple 〈N,T , I ,A,O,C 〉suh that

〈N,T , I ,A〉 is a TAG,O : {µ |µ is a node in a tree in I ∪ A} → {1, 0} is a funtion,andC : {µ |µ is a node in a tree in I ∪ A} → P(A) is a funtion.
Motivation for TAG 20

Tree Adjoining Grammar - Adjuntion onstraints (3)Three types of onstraints are distinguished:Obligatory Adjuntion (OA):a node µ with O(µ) = 1Null Adjuntion (NA):a node µ with O(µ) = 0 and C (µ) = ∅Seletive Adjuntion (SA):a node µ with O(µ) = 0 and C (µ) 6= ∅ and C (µ) 6= AIt is ommon pratie to let the leaves arry the NA-onstraint.Motivation for TAG 21

Tree Adjoining Grammar - Expressivity hallenge
TAG for the opy language {ww |w ∈ {a, b}∗}:S

ǫ

SNAa SS∗NA a SNAb SS∗NA b
Motivation for TAG 22

SummaryStarting point: an we desribe natural languages with CFGs?CFGs: string rewriting formalism, no strong lexialization, noross-serial dependenies.TSGs: tree rewriting formalism, no strong lexialization, noross-serial dependenies.TAG = TSG + adjuntion + adjuntion onstraintsstrong lexializationross-serial dependenies
Motivation for TAG 23

