Grammar Implementation with TAG
Motivation for TAG

Timm Lichte
HHU Diisseldorf

SS 2011
13.04.2010

Motivation for TAG 1

Outline

1. Why CFG is not enough
2. Tree Substitution Grammars

3. Tree Adjoining Grammars

o Adjunction and substitution
o Adjunction constraints

Motivation for TAG 2

Why CFG is not enough

... for treating natural language:

1. only atomic non-terminals
2. only weak lexicalization (lexicalization challenge)

3. expressive power is too low (expressivity challenge)

Motivation for TAG 8

Why CFG is not enough (1) - Atomic non-terminals

S— NP VP NP — John NP — Mary
VP — V VP —- V NP V — sleeps V — likes

Possible derivation:

S = NP VP = John VP = John V = John sleeps
S = John likes Mary

S = John sleeps Mary

How to treat subcategorization frames, number agreement, and
case marking?

(1) a. Kim depends on Sandy.
*Kim depends Sandy.
*Kim depends.
b. *The children depends on Sandy.
c. Kim depends on her/*she.

Motivation for TAG 4

Why CFG is not enough (1)

How to treat subcategorization frames, number agreement, and
case marking?

J

— encode the necessary information into the non-terminal
symbols

S— NP3sg/nom VP3sg/itr S— NP3sg/nom VP3sg/tr

VP3sg/itr - V35g/itr VPBsg/tr - V35g/tr NPBsg/acc
NP35g/”0m — John NP3sg/acc — Mary
Visg itr — sleeps Visg/tr — likes

S = John likes Mary
S = John sleeps

Drawback: Every possible combination of subcategorization frame,
number agreement, and case marking necessitates its own rule (let
alone the number of non-terminal symbols).

Motivation for TAG 5

Why CFG is not enough (1)

Example from German: NP — D N (determiner noun pairs)
Miiller(2007) presents a CFG with 48 non-terminal symbols and 24
rules!

NP3sg/nom - Dfem/sg/nom Nfem/sg/nom
NP3sg/nom - Dmasc/sg/nom Nmasc/sg/nom
NP3sg/nom - Dneu/sg/nom Nneu/sg/nom
NP3pI/nom - Dfem/pl/nom Nfem/pl/nom
NP3pI/n0m - Dmasc/pl/nom Nmasc/pl/nom
NP3pI/nom - Dneu/pl/nom Nneu/pl/nom

—> grammar writing is tedious and error prone
— generalizations are hardly expressible

Remedy: feature structures instead of atomic non-terminal
symbols, unification, underspecification

Motivation for TAG 6

Why CFG is not enough (2) - Only weak lexicalization

Lexicalization

In a lexicalized grammar, each element of the grammar contains at
least one lexical item (terminal symbol).

Gi:5§5—S55 S—a
Gy:S— a5, S—a

@ Computationally interesting: the number of analyses for a
sentence is finite (if the grammar is finite of course).

@ Linguistically interesting: each lexical item comes with the
possibility of certain partial syntactic constructions, therefore
one would like to associate it to a set of substructures.

Motivation for TAG 7

Why CFG is not enough (2)

Lexicalizing a CFG
@ Greibach normal form: A — aBy...B (k > 0)

@ weak lexicalization: string language is preserved

@ strong lexicalization: tree structure is preserved

Question: can CFGs be lexicalized such that the set of trees
remains the same (strong lexicalization)?

Answer: No. Only weak lexicalization (same string language).

Gi:§5—S55 S—a
Gy:§— a5, S—a

Gy cannot be strongly lexicalized with some finite CFG, e.g. Go.

Motivation for TAG 8

Why CFG is not enough (3) - Low expressive power

Question: Are CFGs powerful enough to describe all natural
language phenomena?
Answer: No.

Example: cross-serial dependencies in Dutch and in Swiss
German
(1) e ————] |
... dat Wim Jan Marie de kinderen zag helpen leren zwemmen
... that Wim Jan Marie the children saw help teach swim
‘... that Wim saw Jan help Marie teach the children to swim’

A formalism that can generate cross-serial dependencies must be
able to generate the copy language {ww |w € {a, b}*}.

But: The copy language is not context-free.

Motivation for TAG 9

Tree Substitution Grammar (TSG)

@ a tree rewriting version of CFG

o weakly equivalent generative capacity

@ A CFG-production corresponds to a TSG-tree with the LHS as
root and the RHS as daughters.

@ Applying a CFG-production corresponds to substituting a
non-terminal leaf for a new tree.

S — NP VP S /’V‘P

NP — John NP VP

VP -V N‘P“\\} v A /\‘/
V — sleeps John sleeps

Motivation for TAG 10

Tree Substitution Grammar (2)

A Tree Substitution Grammar (TSG) is a triple G = (N, T, /)
such that

@ T and N are disjoint alphabets, the terminals and
nonterminals, and

@ [is a finite set of initial trees.

The trees can be combined into larger trees by substitution.

The tree language of a TSG is the set of trees generated in this
way that do not contain any remaining non-terminal leaves.

Motivation for TAG 11

Tree Substitution Grammar (3)

Some important facts:
@ TSG is weakly equivalent to CFG (same string language).

@ TSG is not powerful enough to describe cross-serial
dependencies.

@ It is not possible to find a strongly equivalent (same trees)
lexicalized TSG for each CFG.
S

S — SS ‘ g
S—a a

Do
Lw—0O

= Solution: adjunction operation and adjunction constraints!

Motivation for TAG 12

Tree Adjoining Grammar (TAG)

TAG = TSG + adjunction + adjunction constraints

@ The definition of TAG goes back to Joshi et al. (1975).

@ TAG is among the most frequently used grammar formalisms
in computational linguistics.

@ TAG is interesting both for its computational properties
(mildly context-sensitivity) and for its linguistic applications.

@ There are large coverage TAG grammars for English (XTAG,
Philadelphia) and French (FTAG, Paris).

Motivation for TAG 13

Tree Adjoining Grammar - Adjunction (1)

Rewriting operations:

@ substitution: replacing a leaf with a new tree.

@ adjunction: replacing an internal node with a new tree.

Trees that may adjoin are called auxiliary trees and have a special
leaf, the footnode (marked by *). After adjuntion, the subtree
below the target node appears below the footnode.

VP

T

Example: ADV VP*

sometimes

The root node and the footnode are required to carry the same
label. The path from the root node to the footnode is called the
spine.

Motivation for TAG 14

Tree Adjoining Grammar - Adjunction (2)

(2) John sometimes laughs

S
/\
NP __->VP
et VP
NP T
\ ADV VpP* \Y
John | |
sometimes laughs
S
/\
NP VP

derived tree ‘

laugh[1, john][2, sometimes]: John A?V V‘P
sometimes Y
laughs

Motivation for TAG 15

Tree Adjoining Grammar - Adjunction (3)

A Tree Adjoining Grammar (TAG) is a quadruple
G = (N, T,I,A) such that

@ T and N are disjoint alphabets, the terminals and
nonterminals,

@ [is a finite set of initial trees, and

@ A is a finite set of auxiliary trees.

The trees in [U A are called elementary trees.

G is lexicalized iff each elementary tree has at least one leaf with a
terminal label (LTAG).

Motivation for TAG 16

Tree Adjoining Grammar - Adjunction (4)

A derivation starts with an initial tree.
In a final derived tree, all leaves must have terminal labels:

Let G = (I,A N, T) be a TAG. Let v and +' be finite trees.
@ v = ~"in G iff there is a node position p and an instance -,

of a tree (possibly derived from some) 79 € I U A such that

7" =[P, o).
= is the reflexive transitive closure of =

@ The tree language of G is L(G) := {v| thereisan v € /
such that a = + and all leaves in have terminal labels}.

Motivation for TAG 17

Tree Adjoining Grammar - Lexicalization challenge

LTAGs strongly lexicalize CFGs and TAGs.

Example:
S S
g : fS is strongly equivalent with E‘l S*/\S
l
S »
< % LA A A
ANVAN |

Motivation for TAG 18

Tree Adjoining Grammar - Adjunction constraints (1)

TAG as defined above are more powerful than CFG but they cannot
generate the copy language.

In order to increase the expressive power, adjunction constraints are
introduced that specify for each node

© whether adjunction is mandatory and

© which trees can be adjoined.

Motivation for TAG 19

Tree Adjoining Grammar - Adjunction constraints (2)

A TAG with adjunction constraints is a tuple (N, T,1,A, O, C)
such that
o (N, T,I,A)is a TAG,
@ O:{u|pisanodeinatreein /UA} — {1,0} is a function,
and
@ C:{p|pisanodeina treein /UA} — P(A) is a function.

Motivation for TAG 20

Tree Adjoining Grammar - Adjunction constraints (3)

Three types of constraints are distinguished:
@ Obligatory Adjunction (OA):
a node p with O(p) =1

@ Null Adjunction (NA):
a node p with O(u) =0 and C(u) =0

o Selective Adjunction (SA):
a node u with O(u) =0 and C(u) # 0 and C(u) # A

It is common practice to let the leaves carry the NA-constraint.

Motivation for TAG 21

Tree Adjoining Grammar - Expressivity challenge

TAG for the copy language {ww |w € {a, b}*}:

S Sna /S‘NA
‘ a/‘sl\ ° ?\
€

ST\IA a ST\IA b

Motivation for TAG 22

Summary

Starting point: can we describe natural languages with CFGs?

o CFGs: string rewriting formalism, no strong lexicalization, no
cross-serial dependencies.

@ TSGs: tree rewriting formalism, no strong lexicalization, no
cross-serial dependencies.

@ TAG = TSG + adjunction + adjunction constraints

e strong lexicalization
o cross-serial dependencies

Motivation for TAG 23

