HPSG(1)

Miminal Recursion Semantics could, in principle, be integrated into any grammar formalism. So far, it is used in Head-Driven Phrase Structure Grammar (HPSG), [Pollard and Sag, 1994].

- HPSG is a constraint-based grammar formalism that uses typed feature structures.
- An HPSG grammar consists of
- 1. a signature for typed feature structures that defines types and a type hierarchy, including a specification of attributes for each types and of the value types of attributes;
- 2. a set of lexical constraints that specify the feature and values that are determined by lexical items;
- 3. a set of **principles** that are more general constraints.

4

MRS II	1	12. Dezember 2011	MRS II	3	12. Dezember 2011
Kallmever		Unterspezifikation	Kallmever		Unterspezifikation
			HPSG(2)		
			PHON Kim]
			SYNSEM LOC	HEAD noun SUBCAT	
Overview			CONTENT	[INDEX 1], RELN naming NAME Kim	
1. HPSG			L L		J
2. MRS in typed fea	ture structures		PHON walks]
3. Using MRS in HF	PSG			HEAD Verb	, <u> </u>]]
[Copestake et al., 200	5]		CAT SYNSEM LOC	SUBCAT SYNSEM LOC CAT	$\begin{bmatrix} [HEAD noun] \\ [INDEX 2] \end{bmatrix} \end{bmatrix}$
			CONTENT	$\left\{ \begin{bmatrix} \text{RELS} & \text{walk_rel} \\ \text{Arg} & \boxed{2} \end{bmatrix} \right\}$	

MRS II	2	12. Dezember 2011

Unterspezifikation in der Semantik

MRS and typed feature structures

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Wintersemester 2011/2012

MRS II

Unterspezifikation

HPSG (3)

Principles:

- Immediate Dominance Principle: A headed *phrase* with SYNSEM|LOC|CAT|SUBCAT = () has a DTRS list containing a phrasal HEAD-DTR and a list COMP-DTRS of phrasal complements.
- Head Feature Principle: The HEAD value of a *phrase* is identical to the HEAD value of its HEAD-DTR.
- Subcategorization Principle: In a headed *phrase*, the SUBCAT of the HEAD-DTR is the concatenation of the phrase's SUBCAT list and the SYNSEM values of the COMP-DTRS.

MRS II	5	12. Dezember 2011

Kallmeyer

MRS in typed feature structures (1)

Encoding of EPs:

- The EP relation is encoded in the type of the fs.
- A feature LBL gives the labeling handle.
- There is one feature for each argument. These features can be ARG0, ARG1, ..., RESTR, BODY.
- There are types *handle* and *ref_ind* for handles and argument variables respectively. The values of LBL, RESTR and BODY are of type *handle*, those of ARG0, ARG1, ... of type *ref_ind*.

MRS II	7	12. Dezember 2011
LBL 1handle ARG0 2ref_ind	LBL Ihandle ARGO 2ref_ind RESTR 3handle BODY 4handle	

Kallmeyer

Unterspezifikation

MRS in typed feature structures (2)

Encoding MRSs: A feature structure of type mrs has

- a feature HOOK (type *hook*) with features GTOP (global top) and LTOP (local top), both with values of type *handle*, and with an additional feature INDEX or type *ref_ind*;
- a feature RELS whose value is a list of EPs;
- a feature HCONS whose value is a list of features structures of type *qeq*.
- A fs of type *qeq* encodes a qeq constraint. It has features HARG and LARG encoding its hole and label argument. Both are of type *handle*.

8

Idea: the HOOK feature provides those things that need to be accessable when composing MRSs.

[mrs hook ноок GTOP 1 LTOP 7 everu $\left\langle \begin{bmatrix} LBL & 2\\ LBL & 2\\ RESTR & 4\\ RESTR & 4\\ \end{bmatrix}, \begin{bmatrix} -dog\\ LBL & 6\\ ARG0 & 3\\ \end{bmatrix}, \begin{bmatrix} -prbly\\ LBL & 7\\ ARG0 & 8\\ \end{bmatrix}, \begin{bmatrix} -sleep\\ LBL & 9\\ ARG0 & 3\\ \end{bmatrix} \right\rangle$ RELS BODY 10 $\left\langle \begin{bmatrix} qeq \\ HARG & \bot \\ LARG & \overline{T} \end{bmatrix}, \begin{bmatrix} qeq \\ HARG & 4 \\ LARG & 6 \end{bmatrix}, \begin{bmatrix} qeq \\ HARG & 8 \\ LARG & 9 \end{bmatrix} \right\rangle$ HCONS

(some types are omitted for reasons of space)

MRS in typed feature structures (5)

Lexical entries for *probably* and *sleep*:

Composition: We must make sure 14 and 32 get identifide.

Lexical entries for *doq* and *every*:

Composition: We must make sure 27 and 2 get identified as well as 3 and 23.

10

• The value of the CONT (CONTENT) attribute, embedded under

• Depending on the specific semantics, we distinguish sub-types

• Furthermore, we assume, slightly simplifying, that every

syntactic node has two daughters and that the first is the

semantic head which is HOOK-identical with the mother.

intersective-phrase and scopal-phrase of phrase.

SYNSEM|LOCAL is of type mrs.

12. Dezember 2011

Using MRS in HPSG (2)

The following principles are adopted for semantics:

The HOOK of the mother is the HOOK of the semantic head daughter, GTOPs are equated and RELS and HCONS are accumulated.

Kallmeyer

Unterspezifikation

Using MRS in HPSG (3)

In an intersective phrase, LTOPs are equated which amounts to putting things in a bag and thereby interpreting them conjunctively:

 intersective-phrase

 DTR1 | CONT | HOOK | LTOP

 DTR2 | CONT | HOOK | LTOP

Using MRS in HPSG (4)

In a scopal phrase, the LTOP of the non-head daughter is qeq embedded under the scopal argument.

Quantifiers are not scopal phrases, only scopal adverbs such as *probably*, *alledgedly*, sentence-embedding verbs such as *think*, *want*, etc.

15

12. Dezember 2011

```
Kallmeyer
```

Using MRS in HPSG (5)

In other words, scopal phrases are "handle-taking" since they embed the LTOP of their argument.

Consequently, the scope order of these phrases is fixed by the order of their composition. This correctly predicts the following scope orders:

- (1) Bill thinks that Mary probably wins the race $thinks > probably, probably \neq thinks$
- (2) John seems to want to win the race $seems > want, want \not > seems$

Using MRS in HPSG (6)

Furthermore, in between all these operators, there are qeq relations and therefore quantifiers can float in. This correctly predicts

- (3) every boy seems to win the raceseems > every, every ≯ seems
- (4) a unicorn appears to be approaching

a > appears, appears
eq a

MRS II 17 12. Dezember 2011

Kallmeyer

References

- [Copestake et al., 2005] Copestake, A., Flickinger, D., Pollard, C., and Sag, I. A. (2005). Minimal recursion semantics: An introduction. *Research on Language and Computation*, 3:281–332.
- [Pollard and Sag, 1994] Pollard, C. and Sag, I. A. (1994). Head-Driven Phrase Structure Grammar. Studies in Contemporary Linguistics. The University of Chicago Press, Chicago, London.