
Grammar Implementation: XMG
XMG Tutorial

Laura Kallmeyer & Benjamin Burkhardt

(Slides partly by Timm Lichte and Simon Petitjean)

HHU Düsseldorf

WS 2017/2018

1 / 27

How does it work?

XMG processing steps are as follow:

The metagrammar is compiled: metagrammatical language is

translated into executable code

The generated code is executed: accumulation of descriptions

into the dimensions

Descriptions are solved: every dimension comes with a dedi-

cated solver

Models are converted into the output language (XML)

2 / 27

Tools

XMG-1

eXtensible (?) Metagrammar

Only 3 dimensions

XMG-2
Arbitrarily many dimensions, with DSLs

Modular assembly of DSL, using bricks

Methodology to generate a whole processing chain

3 / 27

XMG-2: Architecture (relevant part for us)

4 / 27

Installing XMG 2

Three options, provided by the documentation:

dokufarm.phil.hhu.de/xmg

Follow the steps (Ubuntu), or

Install VirtualBox and get the XMG image

Use the online compiler(s): http://xmg.phil.hhu.de/index.

php/upload/compile_grammar

5 / 27

dokufarm.phil.hhu.de/xmg
http://xmg.phil.hhu.de/index.php/upload/compile_grammar
http://xmg.phil.hhu.de/index.php/upload/compile_grammar

Installing contributions

Making a contribution available is done with the install com-

mand

xmg@xmg:∼/xmg-ng$ cd contributions

xmg@xmg:∼/xmg-ng/contributions$ xmg install core

xmg@xmg:∼/xmg-ng/contributions$ xmg install treemg

xmg@xmg:∼/xmg-ng/contributions$ xmg install compat

xmg@xmg:∼/xmg-ng/contributions$ xmg install

synsemCompiler

6 / 27

Installing compilers

A set of already assembled compilers is available

Building one of them can be done with the build command

xmg@xmg:∼/xmg-ng$ cd contributions/synsemCompiler/

xmg@xmg:∼/xmg-ng/.../synsemCompiler$ cd compilers/

synsem/

xmg@xmg:∼/xmg-ng/.../synsem$ xmg build

To avoid these steps: scripts (reinstall.sh)

7 / 27

Compiling a first metagrammar

The compile command takes two arguments

The compiler which will be used

The metagrammar

xmg@xmg:∼/xmg-ng$ xmg compile synsem MetaGrammars/synsem

/TagExample.mg

8 / 27

Drawing trees

The output of XMG2 can be given to a parser or a generator, but also

be inspected by a tree viewer

XMG comes with a built-in tree viewer:

xmg@xmg:∼/xmg-ng$ xmg gui tag

Pytreeview (https://gitlab.com/parmenti/pytreeview) is

a light tree viewer installed on the Virtualbox distribution of

XMG2:

xmg@xmg:∼/xmg-ng$ pytreeview --mode WEB -i input-file.

xml

A tree and frame viewer is available online: http://xmg.phil.

hhu.de/index.php/upload/xmg_viewer

9 / 27

https://gitlab.com/parmenti/pytreeview
http://xmg.phil.hhu.de/index.php/upload/xmg_viewer
http://xmg.phil.hhu.de/index.php/upload/xmg_viewer

The control language

XMG descriptions:

Associate a content to an identi�er (abstraction)

Describe structures inside dimensions, with dedicated lan-

guages

Use other abstractions (classes)

Combine contents in a disjunctive or a conjunctive way

Class := Name→ Content

Content := 〈Dimension〉{Description} | Name |

Content ∨ Content | Content ∧ Content

10 / 27

Describing trees
The <syn> dimension

Declaring nodes: keyword node, optional node variable, op-

tional features and properties

node ?S [cat=s]

Expressing constraints between nodes: dominance operators

(->, ->+, ->*) and precedence operators (>>, >>+, >>*)

Combining these statements: with logical operators (; and |)

Example:

1 node ?S [cat=s];

2 node ?VP [cat=vp];

3 node ?V (mark=anchor) [cat=v];

4 node ?NP (mark=subst) [cat=n];

5 ?S -> ?VP;

6 ?VP -> ?V;

7 ?S -> ?NP;

8 ?NP >> ?VP

11 / 27

Alternative syntax: bracket notation

The <syn> dimension
Declaring nodes: same as for the standard notation

Expressing dominance and precedence constraints thanks to

bracketing, and special operators for non immediate relations

1 node ?S [cat=s]{

2 node ?NP (mark=subst) [cat=np]

3 node ?VP [cat=vp]{

4 node ?V (mark=anchor) [cat=v]

5 }

6 }

12 / 27

Using dimensions

Contributing descriptions

Descriptions (constraints) are accumulated into dimensions

Every dimension is associated to a solver (sometimes identity)

<syn>: a tree solver generates all minimal models

1 <syn>{

2 node ?S [cat=s];

3 node ?VP [cat=vp];

4 node ?V (mark=anchor) [cat=v];

5 node ?NP (mark=subst) [cat=n];

6 ?S -> ?VP;

7 ?VP -> ?V;

8 ?S -> ?NP;

9 ?NP >> ?VP

10 }

13 / 27

Syntactic nodes

Two nodes can be unified if:
their feature structures can be uni�ed

their properties can be uni�ed

Uni�cation of nodes happens at two di�erent stages:

During the execution of the code (“explicit” uni�cation: uni�ca-

tion instruction = or reuse of variable)

After solving: some nodes may be merged to obtain a minimal

model

14 / 27

Minimal models

A minimal model is a model of the description where:

no constraint is violated

no additional node is created

What are the minimal models for the following sets of constraints?

1 ?S -> + ?A ; ?S -> ?B

1 ?S -> ?A ; ?S -> ?B ; ?S -> ?C ; ?A >>* ?C

Which set of constraints leads to the following minimal models?

S

A B C D

S

A C B D

15 / 27

Definition of types and constants

Everything inside the metagrammar has a type: values, feature

structures, nodes, dimensions. . .

Four ways to define new types:

Enumerated type: type T={a,b,c,d}

Structured type: type T=[a1:t1,. . . ,an:tn]

Interval type: type T=[1..3]

Unspeci�ed type: type T!

16 / 27

Definition of types and constants

We can now specify the types of features and properties:

1 type CAT= {np,vp,s,n,v,det}

2 type MARK= {lex,anchor,subst}

3 type LABEL !

4 type PERS= [1..3]

5 type GEN = {m,f}

6 type NUM = {sg,pl}

7 type AGR = [gen:GEN, num:NUM]

8

9

10 feature cat: CAT

11 feature e: LABEL

12 feature pers: PERS

13 feature agr: AGR

14

15 property mark: MARK

17 / 27

Principles: motivation

As fragments become more numerous, controlling their combi-

nation (and the scope of variables) gets di�cult

Idea: adding new constraints on top of dominance and prece-

dence

Principles: sets of additionnal constraints for the solver
CrabbeDuchier:04

18 / 27

A set of principles

XMG o�ers several sets of additionnal constraints over the models

(principles):

colors: polarities for node uni�cation

rank: linear order constraints on nodes

unicity: uniqueness of a feature inside a model

19 / 27

Rank: Clitics ordering

The ordering of clitic pronouns (in Spanish or French for exam-

ple) is known to be problematic when formalizing a grammar

In a metagrammar, when combining fragments, nodes repre-

senting these clitics have to come in a speci�c order

Pedro nos la da

*Pedro la nos da

Je le lui laisse

*Je lui le laisse

20 / 27

Rank: Clitics ordering (in French)

Every produced model has to satisfy the order constraint

21 / 27

Using principles: rank

1 use rank with () dims (syn)

2 type RANK=[1..7]

3 property rank: RANK

1 class CliticIobjectII

2 import nonReflexiveClitic[]

3 {

4 <syn>{

5 node xCl(rank=2)

6 [top=[func=iobj, pers = @{1,2}]]

7 }

8 }

22 / 27

Using principles: unicity

1 use unicity with (rank=1) dims (syn)

2 use unicity with (rank=2) dims (syn)

3 use unicity with (rank=3) dims (syn)

4 use unicity with (rank=4) dims (syn)

5 use unicity with (rank=5) dims (syn)

6 use unicity with (rank=6) dims (syn)

7 use unicity with (rank=7) dims (syn)

23 / 27

Using principles: colors

Colors are a solution to guide the combination of fragments

A color is a�ected to every node

New constraints on node uni�cation

•b •r ◦w ⊥

•b ⊥ ⊥ •b ⊥

•r ⊥ ⊥ ⊥ ⊥

◦w •b ⊥ ◦w ⊥

⊥ ⊥ ⊥ ⊥ ⊥

Valid models only have red and black nodes

24 / 27

Combination with polarities

S◦W

N •B V ◦W
CanSubj

N •R

N •R S•R

C•R

Wh•R

S◦W

V ◦W
RelObj

S•B

V •B
Active

25 / 27

Combination with polarities

S◦W

N •B V ◦W
CanSubj

N •R

N •R S•R

C•R

Wh•R

S◦W

V ◦W
RelObj

S•B

V •B
Active

25 / 27

Combination with polarities

s•B

np↓•B vp•B

v◦W np◦W

nx0Vnx1

v�•B np↓•B

kick

v•B

kicked

np•B

det•B

the

n•B

bucket

kick_the_bucket

26 / 27

Combination with polarities

s•B

np↓•B vp•B

v◦W np◦W

nx0Vnx1

v�•B np↓•B

kick

v•B

kicked

np•B

det•B

the

n•B

bucket

kick_the_bucket

26 / 27

Using principles: colors

1 use color with () dims (syn)

2 type COLOR={red,black,white}

3 property color: COLOR

1 class nx0Vnx1

2 declare ?S ?NP_Subj ?VP ?V ?NP_Obj

3 {

4 <syn>{

5 ?S (color=red)[cat=s] {

6 ?NP_Subj (color=black, mark=subst) [cat=np]

7 ?VP (color=black)[cat=vp] {

8 ?V (color=white)[cat=v]

9 ?NP_Obj (color=white)[cat=np]

10 }

11 }

12 }

13 }

27 / 27

	XMG 2: tutorial
	Principles

