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LTAG semantics: overview

Goal: an LTAG architecture of the syntax-semantics interface that

is compositional: the meaning of a complex expression can be

computed from the meaning of its subparts and its composition

operation.

pairs entire elementary trees with meaning components.
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LTAG semantics: overview

Three principal approaches:

1 LTAG semantics with synchronous TAG (STAG)

(Shieber, 1994; Nesson and Shieber, 2006, 2008)

2 Uni�cation based LTAG semantics with predicate logic

(Kallmeyer and Joshi, 2003; Gardent and Kallmeyer, 2003;

Kallmeyer and Romero, 2008)

3 Uni�cation based LTAG semantics with frames

(Kallmeyer and Osswald, 2013; Kallmeyer et al., 2016)

We will use the third approach in this course and only brie�y

present the other two.
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LTAG semantics: STAG

Idea:

pair two TAGs, one for syntax and one for L(ogical) F(orm) (=

typed predicate logic),

and do derivations in parallel.

Formalism used for this: synchronous TAG (STAG) Shieber and

Schabes (1990); Shieber (1994).

STAG = two TAGs G1, G2 whose trees are related to each other.

More precisely, it contains pairs 〈γ1, γ2, link〉 where γ1 is an

elementary tree from G1, γ2 an elementary tree from G2, and link is a

set of pairs of node addresses from γ1 and γ2 respectively.
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LTAG semantics: STAG

〈 〉S
1

VP
3

V

laughed

NP
2

t
1 , 3

e
2〈e, t〉

laugh

(The links are depicted with boxed numbers.)

The non-terminals of the semantic TAG are types t, e, 〈e, t〉, . . . .
The semantic TAG describes the syntactic structure of typed

predicate logical formulas.

The links in this example tell us, for instance, that the subject

NP corresponds to the e argument of laugh.
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LTAG semantics: STAG

STAG derivation proceeds as in TAG, except that all operations must

be paired: In every derivation step:

A new elementary tree pair 〈γ1, γ2〉 is picked.

γ1 is attached (substituted or adjoined) to the syntactic tree

while γ2 is attached to the semantic tree.

The nodes that the two trees attach to must be linked.

The link that is used in this derivation step disappears while all

other links involving the attachment sites are inherited by the

root of the attaching tree.

7 / 23



LTAG semantics: STAG

S
1

VP
3

V

laughed

NP
2

S
1

VP
3

V

laughed

NP

John

S
1

VP

VP

V

laughed

Adv

sometimes

NP

John

t
1 , 3

e
2〈e, t〉

laugh

t
1 , 3

e

john

〈e, t〉

laugh

t
1

t

e

john

〈e, t〉

laugh

〈t, t〉

sometimes

NP

John

e

john

VP

VP
∗

Adv

sometimes

t

t
∗〈t, t〉

sometimes

Logical form: sometimes(laugh(john))
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Uni�cation-based LTAG semantics with predicate logic

Kallmeyer and Romero (2008), Gardent and Kallmeyer (2003):

Syntax-Semantics Interface for LTAG

Idea: Each elementary tree is paired with

A set of typed predicate logic expressions and of scope

constraints (i.e., constraints on sub-term relations)

interface features that characterizes a) which arguments need

to be �lled, b) which elements are available as arguments for

other elementary trees and c) the scope behaviour.

The features are linked to positions in the elementary tree.
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Uni�cation-based LTAG semantics with predicate logic
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l1 signi�es that the formula labeled l1 is a subformula of the

formula that has to be placed in the hole 6 .

Disambiguation leads to john(x) ∧ sometimes(laugh(x))
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Uni�cation-based LTAG semantics with frames

Semantic representations are linked to entire elementary trees

(as in the previous approaches).

Semantic representations: frames, expressed as typed feature

structures.

Interface features relate nodes in the syntactic tree to nodes in

the frame graph.

Frame composition by uni�cation, triggered by the uni�cations

on the interface features that are in turn triggered by

substitution, adjunction and �nal top-bottom uni�cation on the

derived tree.
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Uni�cation-based LTAG semantics with frames

(1) Adam ate an apple.
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V
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]


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Introduction to frame semantics

Frames as used in LTAG
A representation format for rich lexical and constructional
content.
Can nicely capture semantic composition and

decomposition.

Can be formalized as generalized feature structures with

types, relations and node labels.

Basic assumptions
Attributes (features, functional roles/relations) play a central

role in the organization of semantic and conceptual knowledge

and representation.

Semantic components (participants, subevents) can be

(recursively) addressed via attributes (from some “base” node).

 inherently structured representations (models);

composition by uni�cation (under constraints)
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and representation.

Semantic components (participants, subevents) can be

(recursively) addressed via attributes (from some “base” node).

 inherently structured representations (models);

composition by uni�cation (under constraints) 13 / 23



Introduction to frame semantics

Example

e

locomotion

x

man

path

walking

region

z

house

region

actor

mover

path

manner

endp

in-region

part-of

Ingredients

Attributes (funct. relations): actor, mover, path, manner,

in-region, . . .

Type symbols: locomotion, man, path, walking, region, . . .

Proper relations: part-of

Node labels (variables): e, x, z

Core property

Every node is reachable from some labeled “base” node via

attributes.
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Introduction to frame semantics

Example
(2) Anna ran

to the station.

e

bounded-motion

running

person

‘Anna’

loc-stage

station

actor name

final
theme

loc

e



running ∧ bounded-motion

actor 1

[
person

name ‘Anna’

]

final

loc-stage

theme 1

loc [station]





Attribute-value logic
e · (running ∧ bounded-motion ∧ actor : (person ∧ name , ‘Anna’)

actor
.
= final theme ∧ final : (loc-stage ∧ loc : station))
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Attribute-value logic
e · (running ∧ bounded-motion ∧ actor : (person ∧ name , ‘Anna’)

actor
.
= final theme ∧ final : (loc-stage ∧ loc : station))

Translation into �rst-order logic
∃x∃s∃y(running(e) ∧ bounded-motion(e) ∧ actor(e, x) ∧ person(x) ∧ name(x, ‘Anna’)
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loc-stage V theme :> ∧ loc :>, . . .
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Case study: directed motion construction

Intransitive:

(3) a. Mary walked to the house.

b. The ball rolled into the goal.

Transitive:

(4) a. John threw/kicked the ball into the goal.

b. John pushed/pulled the cart to the station.

c. John rolled the ball into the hole.

Directional speci�cations are not restricted to goal expressions but

can

also describe the source or the course of the path in more detail.

Moreover, path descriptions can be iterated to some extent:

(5) a. John walked through the gate along the fence to the house.

b. John threw the ball over the fence into the yard.
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Case study: directed motion construction

Question: Syntactic treatment of directional PPs ?

Construction ( elementary tree)

Syntactic composition ( adjunction)

Arguments for treating goal (or bounded) PPs constructionally,

in contrast to path (or unbounded) PPs:

Goal PPs cannot be iterated.

They a�ect the Aktionsart of the expression:

(6) a. She walked (*in half an hour/for half an hour).

b. She walked to the brook (in half an hour/*for half an hour).

c. She walked along the brook (*in half an hour/for half an

hour).
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Case study: directed motion construction

Unanchored construction for intransitive directed motion

(n0Vpp(dir)):

S

NP[i=x] VP[e=e]
VP[e=e] PP[i=z,e=e]

V◇[e=e]

e

⎡⎢⎢⎢⎢⎢⎢⎢⎣

bounded-translocation
mover x
goal z
path [path]

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Elementary tree for ‘into’:

PP[i=z,e=e]

P NP[i=z]

‘into’

e

⎡⎢⎢⎢⎢⎢⎣
bounded-translocation

path [path
endp 1

]
⎤⎥⎥⎥⎥⎥⎦

z [in-region 2 ]
part-of( 1 , 2 )
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Case study: directed motion construction

Example (intransitive directed motion)

(7) John walked into the house.

NP[i=x′]
‘John’

x ′ [person
name ‘John’

]

S

NP[i=x] VP[e=e]
VP[e=e] PP[i=z,e=e]

V[e=e]
‘walked’

e

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bounded-locomotion
actor 1 x
mover 1

goal z
path [path]
manner [walking]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

e′
⎡⎢⎢⎢⎢⎢⎢⎣
event

path [path
endp 1

]
⎤⎥⎥⎥⎥⎥⎥⎦

z′ [in-region 2 ]
part-of( 1 , 2 )

PP[i=z′,e=e′]

P NP[i=z′]

‘into’

NP[i=z′′]
Det N

‘the’ ‘house’

z′′ [house
in-region [region]

]
19 / 23
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e

bounded-locomotion

x
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walking
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house
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actor

mover

path
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endp
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in-region
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Case study: directed motion construction

Lexical anchoring (non-directed case)

morph entry
‘walked’
pos: V
Syn1:⎡⎢⎢⎢⎢⎢⎣
agr =

⎡⎢⎢⎢⎢⎣
pers = 3
num = sg

⎤⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎥⎦

lemma: walk

+ lemma entry
walk:
FAM: n0V, . . .
Syn2:[e = e0]
Sem :

e0

⎡⎢⎢⎢⎢⎣
locomotion
manner [walking]

⎤⎥⎥⎥⎥⎦

+ Constraints:
locomotion ⇛ activity ∧ translocation
translocation ⇛ motion ∧ path ∶ path
activity ⇛ actor ∶ ⊺
motion ⇛ mover ∶ ⊺
activity ∧motion ⇛ actor ≐ mover

↝ e0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

locomotion
actor 1

mover 1

path [path]
manner [walking]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

V[agr = ...,e= e0]
‘walked’

S

NP[i=x] VP[e=e]
V◇[e=e]

e
⎡⎢⎢⎢⎢⎣
activity
actor x

⎤⎥⎥⎥⎥⎦
e0 ≜ e

↝ e

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

locomotion
actor 1 x
mover 1

path [path]
manner [walking]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

S

NP[i=x] VP[e=e]
V[agr = ...,e= e]

‘walked’
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Case study: directed motion construction

Example

(8) John walked along the brook.

S

NP[i=x] VP[e=e]
V[e=e]
walked

e

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

locomotion
actor 1 x
mover 1

path [path]
manner [walking]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

VP

VP∗[e=e′] PP[i=z]

P NP[i=z]

along

e′
⎡⎢⎢⎢⎢⎢⎣
translocation

path [path
region 2

]
⎤⎥⎥⎥⎥⎥⎦

z [at-region 3 ]
part-of( 2 , 3 )e

locomotion

x

person

path

walking

region

z

region

actor

mover

path

manner

region at-regionpart-of
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region at-regionpart-of
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Case study: directed motion construction

Example (causative directed motion)

(9) Mary threw/kicked/rolled the ball into the room.

Unanchored construction (n0Vn1pp(dir)):

S

NP[i=x] VP[e=e]
VP[e= e,path= p] PP[i= z,e= e′]

V◇[e=e] NP[i=y]

e

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

causation

cause

⎡⎢⎢⎢⎢⎢⎣
activity
actor x
theme y

⎤⎥⎥⎥⎥⎥⎦
effect e′

⎡⎢⎢⎢⎢⎢⎢⎢⎣

bounded-translocation
mover y
goal z
path p

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(Partial) lexical entry for ‘threw’:

V[e=e]
‘threw’

e

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

onset-causation

cause

⎡⎢⎢⎢⎢⎢⎢⎢⎣

activity
actor ⊺
theme 1

manner [throwing]

⎤⎥⎥⎥⎥⎥⎥⎥⎦
effect

⎡⎢⎢⎢⎢⎢⎣
translocation ∧ undergoing
theme 1

mover 1

⎤⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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