Tree Adjoining Grammars XTAG-Analyses of Syntactic Phenomena

Laura Kallmeyer & Timm Lichte

HHU Düsseldorf

WS 2012 24.10.2012

Outline

- The XTAG-grammar
- Complementation
 - NP- and PP-complements
 - Sentential complements
 - Control
 - Raising
 - Small clauses
- Extraction
 - Unbounded dependency
 - Islands for extraction
 - Subject-auxiliary inversion
 - Relative clauses

The XTAG-project

URL: http://www.cis.upenn.edu/~xtag/

Manual: [XTAG Research Group, 2001]

The architecture of the XTAG-grammar

Example: Tree template for the declarative transitive verb $(\alpha nx0Vnx1)$, where \diamond marks the lexical insertion site:

The architecture of the XTAG-grammar

Example: **Tree template** for the declarative transitive verb $(\alpha n \times 0 \text{Vn} \times 1)$, where \diamond marks the lexical insertion site:

The architecture of the XTAG-grammar

A tree family

- is a set of tree templates,
- represents a subcategorization frame, and
- unifies all syntactic configurations the subcategorization frame can be realized in.

Example: $\alpha nx0Vnx1 \in Tnx0Vnx1$

The architecture of the XTAG-grammar - Counts

subcategorization frame	# tree fam.	# tree temp.
intransitive	1	12
transitive	1	39
adjectival complement	1	11
ditransitive	1	46
prepositional complement	4	182
verb particle constructions	3	100
light verb constructions	2	53
sentential complement (full verb)	3	75
sentential subject (full verb)	4	14
idioms (full verb)	8	156
small clauses/predicative	20	187
equational 'be'	1	2
ergative	1	12
resultatives	4	101
it clefts	3	18
total	57	1008

(from [Prolo, 2002])

Lexical insertion

Lexical insertion

Drawing an edge between the lexical anchor and the lexical insertion site

- prior to substitution and adjunction
- The feature structures of the lexical anchor and the insertion site unify.

Outline

- The XTAG-grammar
- Complementation
 - NP- and PP-complements
 - Sentential complements
 - Control
 - Raising
 - Small clauses
- 3 Extraction
 - Unbounded dependency
 - Islands for extraction
 - Subject-auxiliary inversion
 - Relative clauses

Complementation with NPs and PPs: The base cases

Complementation with NPs:

Complementation with PPs: substitution or co-anchor

Complementation with NPs and PPs: The base cases

Complementation with NPs:

Complementation with PPs: substitution or co-anchor

Case assignment and subject-verb agreement

Two modes of case assignment in tree templates:

- Direct case assignment with case
- Indirect case assignment with assign-case
 - \Rightarrow by the lexical anchor (during lexical insertion) or by adjoining trees

Case assignment and subject-verb agreement

Case assignment and subject-verb agreement

In XTAG, a distinction is drawn between sentential complements with (i) finite verbs, sentential complements with (ii) to-infinitives, and (iii) small clauses.

```
(1) a. Kim said [that Sandy left]. (finitive)
b. Dana preferred [for Pat to get the job]. (to-infinitive)
c. Leslie wanted [Chris to go].
d. René tried [PRO to win].
e. [Kim] seems [to be happy].
f. Tracy proved [the theorem false]. (small clauses)
g. Bo considered [Lou a friend].
h. Gerry expects [those children off the ship]
(from [Pollard and Sag, 1994])
```

In XTAG, a distinction is drawn between sentential complements with (i) finite verbs, sentential complements with (ii) to-infinitives, and (iii) small clauses.

(1) a. Kim said [that Sandy left]. (finitive)
b. Dana preferred [for Pat to get the job]. (to-infinitive)
c. Leslie wanted [Chris to go].
d. René tried [PRO to win].
e. [Kim] seems [to be happy].
f. Tracy proved [the theorem false]. (small clauses)
g. Bo considered [Lou a friend].
h. Gerry expects [those children off the ship]

In XTAG, a distinction is drawn between sentential complements with (i) finite verbs, sentential complements with (ii) to-infinitives, and (iii) small clauses.

- (1) a. Kim said [that Sandy left]. (finitive) b. Dana preferred [for Pat to get the job]. (to-infinitive)
 - c. Leslie wanted [Chris to go].
 - d. René tried [PRO to win].
 - e. [Kim] seems [to be happy].
 - f. Tracy proved [the theorem false]. (small clauses)
 - g. Bo considered [Lou a friend]
 - h. Gerry expects [those children off the ship] (from [Pollard and Sag, 1994])

In XTAG, a distinction is drawn between sentential complements with (i) finite verbs, sentential complements with (ii) to-infinitives, and (iii) small clauses.

- (1) a. Kim said [that Sandy left]. (finitive)
 - b. Dana preferred [for Pat to get the job]. (to-infinitive)
 - c. Leslie wanted [Chris to go].
 - d. René tried [PRO to win].
 - e. [Kim] seems [to be happy].
 - f. Tracy proved [the theorem false]. (small clauses)
 - g. Bo considered [Lou a friend].
 - h. Gerry expects [those children off the ship] (from [Pollard and Sag, 1994])

XTAG assumes different syntactic structures/derivations for superficially very similar sentences:

- (2) a. John tries [PRO to leave].
 - b. [John] seems [to leave].

Why is that?

XTAG adopts the **projection principle** from GB [Chomsky, 1981], according to which "meaning maps transparently into syntactic structure" [Culicover and Jackendoff, 2005, 47], such that the following equivalence relation holds:

Complement of the verb ← Argument of the predicate

 $\Rightarrow \theta$ -criterion for TAG from [Frank, 2002]

XTAG assumes different syntactic structures/derivations for superficially very similar sentences:

- (2) a. John tries [PRO to leave].b. [John] seems [to leave].
 - Why is that?

XTAG adopts the **projection principle** from GB [Chomsky, 1981], according to which "meaning maps transparently into syntactic structure" [Culicover and Jackendoff, 2005, 47], such that the following equivalence relation holds:

Complement of the verb \iff Argument of the predicate

 $\Rightarrow \theta$ -criterion for TAG from [Frank, 2002]

Complement of the verb \iff Argument of the predicate

(3) John tries to leave.
tries(John,leave(John))

- \Rightarrow John is the complement of both tries and to leave.
- \Rightarrow Empty element (PRO) is used to avoid complement sharing.
- \Rightarrow PRO needs to be "controlled".
- \Rightarrow Control
- (4) John seems to leave.
- \Rightarrow John is not the complement of seems
- ⇒ Argumenthood is the primary syntactic factor, not agreement!
- ⇒ An alien complement looks like a regular complement
- \Rightarrow Kaising

Complement of the verb \iff Argument of the predicate

(3) John tries to leave.
tries(John,leave(John))

- \Rightarrow John is the complement of both tries and to leave.
- ⇒ Empty element (PRO) is used to avoid complement sharing.
- \Rightarrow PRO needs to be "controlled".
- \Rightarrow Control
- (4) John seems to leave.

- \Rightarrow *John* is not the complement of *seems*.
- ⇒ Argumenthood is the primary syntactic factor, not agreement!
- ⇒ An alien complement looks like a regular complement.
- \Rightarrow Raising

Classfication game:

- (5) a. They asked Jan to leave.
 - b. Bo turns out to be obnoxious
 - c. Sandy is willing to go to the movies.
 - d. Terry was expected to win the prize
 - e. Kim believed a unicorn to be approaching.

Classfication game:

- (5) a. They asked Jan to leave.
 - b. Bo turns out to be obnoxious.
 - c. Sandy is willing to go to the movies.
 - d. Terry was expected to win the prize.
 - e. Kim believed a unicorn to be approaching.

Classfication game:

(5) a. They asked Jan to leave.

(object control)

- b. Bo turns out to be obnoxious.
- c. Sandy is willing to go to the movies.
- d. Terry was expected to win the prize.
- e. Kim believed a unicorn to be approaching.

Classfication game:

- (5) a. They asked Jan to leave.
 - b. Bo turns out to be obnoxious.
 - c. Sandy is willing to go to the movies.
 - d. Terry was expected to win the prize.
 - e. Kim believed a unicorn to be approaching.

(object control)

(subject raising)

• Classfication game:

(5) a.	They asked Jan to leave.	(object control)
b.	Bo turns out to be obnoxious.	(subject raising)
С.	Sandy is willing to go to the movies.	(subject control)
d.	Terry was expected to win the prize.	

e. Kim believed a unicorn to be approaching.

• Classfication game:

(5) a.	They asked Jan to leave.	(object control)
b.	Bo turns out to be obnoxious.	(subject raising)
С.	Sandy is willing to go to the movies.	(subject control)
d.	Terry was expected to win the prize.	(subject raising)

e. Kim believed a unicorn to be approaching.

• Classfication game:

(5) a.	They asked Jan to leave.	(object control)
` '	Bo turns out to be obnoxious.	(subject raising)
С.	Sandy is willing to go to the movies.	(subject control)
d.	Terry was expected to win the prize.	(subject raising)
e.	Kim believed a unicorn to be approaching.	(object raising)

• Pifalls and special cases:

- (6) a. It is important for Bill to dance. (PP-raising?)
 b. Christy left the party early to go to the airport. (modifier?)
 - c. Peter kept standing in the doorway. (no to-infinitive)

Control verbs

Control verbs establish the coreference between their subject/object and the unexpressed subject (PRO) of their sentential complement.

(7) a. John tried [PRO to leave]. (subject control)

b. John persuaded him [PRO to leave]. (object control)

c. *There tries [PRO to be disorder after a revolution].

 \Rightarrow Control verbs assign semantic role to the controller!

Control verbs

Control verbs establish the coreference between their subject/object and the unexpressed subject (PRO) of their sentential complement.

(7) a. John tried [PRO to leave]. (subject control)

b. John persuaded him [PRO to leave]. (object control)

c. *There tries [PRO to be disorder after a revolution].

⇒ Control verbs assign semantic role to the controller!

Control verbs - XTAG-Analysis

- control feature for coindexation
- PRO tree or PRO as coanchor of the verb

Example for subject control:

Control verbs - XTAG-Analysis

- control feature for coindexation
- PRO tree or PRO as coanchor of the verb

Example for object control:

Raising verbs

Raising verbs determine case and agreement properties of the subject complement of the (non-finite) sentential complement. Since the "raised" constituent is no immediate part of the argument structure of the raising verb, this is called **Exceptional Case Marking (ECM)**.

(8) a. [John] seems [to leave].

(subject raising)

b. Sue expects [him to leave].

(object raising)

- d labor expected lit to reinl
- ⇒ allow for expletive pronouns (it/there)
- (9) John seems unhappy.
 *John tries unhappy.
- ⇒ allow for small clauses

Raising verbs

Raising verbs determine case and agreement properties of the subject complement of the (non-finite) sentential complement. Since the "raised" constituent is no immediate part of the argument structure of the raising verb, this is called **Exceptional Case Marking (ECM)**.

(8) a. [John] seems [to leave].

(subject raising)

b. Sue expects [him to leave].

- (object raising)
- c. [There] seems [to be disorder after a revolution].
- d. John expected [it to rain].
- \Rightarrow allow for expletive pronouns (it/there)
- (9) John seems unhappy*John tries unhappy.
- ⇒ allow for small clauses

Raising verbs

Raising verbs determine case and agreement properties of the subject complement of the (non-finite) sentential complement. Since the "raised" constituent is no immediate part of the argument structure of the raising verb, this is called **Exceptional Case Marking (ECM)**.

(8) a. [John] seems [to leave].

(subject raising)

b. Sue expects [him to leave].

- (object raising)
- c. [There] seems [to be disorder after a revolution].
- d. John expected [it to rain].
- \Rightarrow allow for expletive pronouns (it/there)
- (9) John seems unhappy.*John tries unhappy.
- ⇒ allow for small clauses

Raising verbs - XTAG-Analysis (1)

- no PRO
- The "raised" constituent is still part of the to-infinitive!
- ECM via assign-case feature

Example for subject raising:

Raising verbs - XTAG-Analysis (2)

Example for object raising:

(10) We expect him to leave.

"Ist's eins? Sind's zwei?" (Goethe, 1819)

Question:

What complements does the verb consider take?

- (11) a. We consider [Kim to be an acceptable candidate].
 - b. We consider [Kim an acceptable candidate].
 - c. We consider [Kim quite acceptable].
 - d. We consider [Kim among the most acceptable candidates].
 - e. *We consider [Kim as an acceptable candidate].

Similar verbs: prove, expect, rate, count, want

- One sentential complement (small clause), where to be can be omitted
- 2 A noun and a predicative phrase

"Ist's eins? Sind's zwei?" (Goethe, 1819)

Question:

What complements does the verb consider take?

- (11) a. We consider [Kim to be an acceptable candidate].
 - b. We consider [Kim an acceptable candidate].
 - c. We consider [Kim quite acceptable].
 - d. We consider [Kim among the most acceptable candidates].
 - e. *We consider [Kim as an acceptable candidate].

Similar verbs: prove, expect, rate, count, want

- One sentential complement (small clause), where to be can be omitted
- A noun and a predicative phrase

Small clauses - Pro and contra (1)

Pro:

- Homomorphism between argument structure and complement structure (in GB: Projection Principle, UTAH; in TAG: θ -Criterion)
- Uniformity of the subcategorized constituents:
 Instead of NP, AP, PP, IP/S, ... as possible categories of
 - complements, there is only one complement categories of the

Small clauses - Pro and contra (1)

Pro:

- Homomorphism between argument structure and complement structure (in GB: Projection Principle, UTAH; in TAG: θ -Criterion)
- Uniformity of the subcategorized constituents:
 - Instead of NP, AP, PP, IP/S, ... as possible categories of the complements, there is only one complement category.

Small clauses - Pro and contra (2)

Contra:

- Passivization (object-to-subject shift)
 - (12) We considered [Kim quite acceptable]. Kim was considered [__ quite acceptable].
- Idiosyncratic restrictions on the predicative phrase
 - (13) a. I consider/*expect [this Island a good vacation spot].
 - I consider/*expect [this man stupid]
 I expect [that man to be stupid].
 - c. We rate/*consider [Kim as quite acceptable]
- ⇒ The verb should be indifferent to the categorial status of the small clause predicate!

Small clauses - Pro and contra (2)

Contra:

- Passivization (object-to-subject shift)
 - (12) We considered [Kim quite acceptable]. Kim was considered [__ quite acceptable].
- Idiosyncratic restrictions on the predicative phrase
 - (13) a. I consider/*expect [this Island a good vacation spot].
 - b. I consider/*expect [this man stupid].I expect [that man to be stupid].
 - c. We rate/*consider [Kim as quite acceptable]
- ⇒ The verb should be indifferent to the categorial status of the small clause predicate!

Small clauses - XTAG-Analysis (1)

Small clauses have the structure of regular sentences, except that the verb is missing.

⇒ The superordinate verb is represented as auxiliary tree that adjoins at VP or S.

Small clauses - XTAG-Analysis (2)

(14) We consider Kim acceptable.

Small clauses - XTAG-Analysis (3)

(15) Kim seems acceptable.

Raise and control - Summary

control verbs	raising verbs
assign semantic role	assign <u>no</u> semantic role
(to the controlled subject)	(to the raised subject)
PRO	no PRO
(incomplete sent. complement)	(complete sent. complement)
assign <u>no</u> case	assign case via ECM
(to the controlled subject)	(to the raised subject)
no small clauses	small clauses
XTAG: adjoin to S	XTAG: adjoin to S or VP

Outline

- 1 The XTAG-grammar
- 2 Complementation
 - NP- and PP-complements
 - Sentential complements
- Extraction
 - Unbounded dependency
 - Islands for extraction
 - Subject-auxiliary inversion
 - Relative clauses

Extraction - Basics

The movement metaphor:

- Relating syntactic configurations in a derivational hierarchy.
- Traces and coindexation are used to express derivational subordination.

Topicalization/Extraction

Placing a post-verbal constituent into a sentence-initial position.

```
(16) a. Sandy loves Kim. (base configuration)

b. Kim<sub>i</sub>, Sandy loves __i . (NP-topicalization)

c. On Kim<sub>i</sub>, Sandy depends __i . (PP-topicalization)
```

Extraction - Basics

The movement metaphor:

- Relating syntactic configurations in a derivational hierarchy.
- Traces and coindexation are used to express derivational subordination.

Topicalization/Extraction:

Placing a post-verbal constituent into a sentence-initial position.

(16) a. Sandy loves Kim. (base configuration)

b. \lim_{i} , Sandy loves __i . (NP-topicalization)

c. On Kim_i , Sandy depends ___i . (PP-topicalization)

Wh-extraction - Basics

Wh-Extraction:

Placing a constituent as wh-phrase into a clause-initial position.

- (17) a. I wonder [who; Sandy loves ______] . (indirect question)
 - b. Who, does Sandy love ____ (direct question)
 - c. Sandy loves Kim_i [who_i Irmgard hates $_i$]. (relative clause)

Extraction - Tree templates

$\begin{array}{c} \textbf{subject extraction} \\ (\alpha \text{W0nx0V}) \end{array}$

object extraction (αW1nx0Vnx1)

Extraction - Tree templates

preposition stranding (αW1nx0VPnx1)

adjective complement extraction $(\alpha WA1nx0Vax1)$

Unbounded dependency

Unbounded dependency:

The dependency between an extracted constituent and its trace may extend across arbitrarily many clause boundaries.

- (18) a. Kim_i , Sandy loves $\underline{}_i$.
 - b. Kim_i, Chris knows [Sandy loves ___i].
 - c. Kim_i, Dana believes [Chris knows [Sandy loves ___i]].
- (19) a. I wonder [who; Sandy loves ___;].
 - b. I wonder [who; Chris knows [Sandy loves ___i]].
 - c. I wonder [who; Dana believes Chris knows [Sandy loves ___i]]

Unbounded dependency

Unbounded dependency:

The dependency between an extracted constituent and its trace may extend across arbitrarily many clause boundaries.

- (18) a. Kim_i , Sandy loves $\underline{}_i$.
 - b. Kim_i, Chris knows [Sandy loves ___i].
 - c. Kim_i, Dana believes [Chris knows [Sandy loves ___i]].
- (19) a. I wonder [who; Sandy loves ____j].
 - b. I wonder [who; Chris knows [Sandy loves ___i]].
 - c. I wonder [who; Dana believes Chris knows [Sandy loves ___i]].

Unbounded dependency - XTAG-analysis (outline)

(20) Kim_i, Dana believes [Chris knows [Sandy loves ___i]].

 \Rightarrow extended domain of locality and factoring of recursion (recursive adjunction)

Adjuncts:

- (21) *[Which movie]_i did Gorgette fall asleep [after watching $\underline{}_{i}$].
- \Rightarrow No such elementary tree for the adjunct!

Coordination

- (22) *Who; did Sandy love [__; and Kim].
- ⇒ No such elementary trees for the coordinated NP and for the governing verb!

Adjuncts:

- (21) *[Which movie]_i did Gorgette fall asleep [after watching $\underline{}_{i}$].
- \Rightarrow No such elementary tree for the adjunct!

Coordination

- (22) *Who; did Sandy love [__; and Kim].
- \Rightarrow No such elementary trees for the coordinated NP and for the governing verb!

 Finite sentences with complementizer (subject extraction) (In GB: Empty Category Principle/Subjacency): (23) *Who; did Alice say [that ; left]. Who; did Alice say [; left]. \Rightarrow No such elementary trees! • Finite sentences with complementizer (object extraction)

- Finite sentences with complementizer (subject extraction) (In GB: Empty Category Principle/Subjacency):
 - (23) *Who; did Alice say [that __; left]. Who; did Alice say [__; left].
 - \Rightarrow No such elementary trees!
- Finite sentences with complementizer (object extraction)
 - (24) *Who; did the elephant whisper [that the emu saw ___i] ? Who; did the elephant say [that the emu saw ___i] ?
 - \Rightarrow Filtering by features:

```
comp = nil, where non-bridge verbs attach (whisper)
```

comp = nil/that, where bridge verbs attach (say)

Subject-auxiliary inversion

The auxiliary verb ('do', 'have', 'be', 'can', . . .) precedes the subject.

• No subject-auxiliary inversion in embedded wh-questions:

```
(25) a. I wonder [what; John reads __;].
b. *I wonder [what; does John read __;]
```

 Obligatory subject-auxiliary inversion in direct questions with object extraction:

```
(26) a. What; does John read __;?
b. *What; John does read __;?
c. *What; John reads __;?
```

• No subject-auxiliary inversion in topicalization:

```
(27) a. *This report; does John read __;
b. This report; John does read _;
```

Subject-auxiliary inversion

The auxiliary verb ('do', 'have', 'be', 'can', ...) precedes the subject.

• No subject-auxiliary inversion in embedded wh-questions:

```
(25) a. I wonder [what; John reads __i].
b. *I wonder [what; does John read __i].
```

 Obligatory subject-auxiliary inversion in direct questions with object extraction:

```
(26) a. What; does John read __;?
b. *What; John does read __;?
c. *What; John reads __;?
```

• No subject-auxiliary inversion in topicalization:

```
(27) a. *This report; does John read ___;b. This report; John does read ___;
```

Subject-auxiliary inversion

The auxiliary verb ('do', 'have', 'be', 'can', ...) precedes the subject.

• No subject-auxiliary inversion in embedded wh-questions:

```
(25) a. I wonder [what; John reads __i].
b. *I wonder [what; does John read __i].
```

 Obligatory subject-auxiliary inversion in direct questions with object extraction:

```
(26) a. What; does John read __;?
b. *What; John does read __;?
c. *What; John reads __;?
```

No subject-auxiliary inversion in topicalization:

```
(27) a. *This report; does John read ____;
b. This report; John does read ____;
```

Subject-auxiliary inversion

The auxiliary verb ('do', 'have', 'be', 'can', ...) precedes the subject.

• No subject-auxiliary inversion in embedded wh-questions:

```
(25) a. I wonder [what; John reads __i].
b. *I wonder [what; does John read __i].
```

 Obligatory subject-auxiliary inversion in direct questions with object extraction:

```
(26) a. What; does John read __;?
b. *What; John does read __;?
c. *What; John reads __;?
```

No subject-auxiliary inversion in topicalization:

Subject-auxiliary inversion - XTAG-analysis (1)

Features for extraction:

- extracted $:= \{+,-\}$
 - ⇒ to indicate extraction in the S-node
- wh := $\{+,-\}$
 - ⇒ to indicate the presence of a wh-pronoun
- inv := $\{+,-\}$
 - ⇒ to indicate inversion
- invlink := $\{+,-\}$
 - ⇒ to link wh und inv via the root restriction

Subject-auxiliary inversion - XTAG-analysis (2)

Tree template for object extraction (simplified):

Subject-auxiliary inversion - XTAG-analysis (3)

Elementary tree with object extraction (even more simplified) and elementary tree for the inverting auxiliary do:

Subject-auxiliary inversion - XTAG-analysis (4)

Example derivation:

Subject-auxiliary inversion - XTAG-analysis (4)

Example derivation:

Subject-auxiliary inversion - XTAG-analysis (4)

Example derivation:

Subject-auxiliary inversion - XTAG-analysis (5)

- No subject-auxiliary inversion in embedded wh-questions:
 - ⇒ The governing verb selects a sentential complement with inv = - in the root node.
- Obligatory subject-auxiliary inversion in direct questions:
 - \Rightarrow In the root node: wh = +, inv = +
- No subject-auxiliary inversion in topicalization:
 - \Rightarrow In the root node: wh = -, inv = -

Problem

How to impose that wh=inv in non-embedded object extraction, without including embedded sentences or subject extraction?

Subject-auxiliary inversion - XTAG-analysis (6)

Root restriction

"A restriction is imposed on the **final root node** of any XTAG derivation of a tensed sentence which equates the wh feature and the invlink feature of the final root node." [XTAG Research Group, 2001, 296]

Crucial difference:

- The trees for object extraction have the invlink.
- The trees for subject extraction do <u>not</u> have the invlink.

Effects

- Only in non-embedded object extractions the wh-pronoun depends on inversion and vice versa.
- The same tree can be used for embedded and non-embedded object extraction.

Subject-auxiliary inversion - XTAG-analysis (6)

Root restriction

"A restriction is imposed on the **final root node** of any XTAG derivation of a tensed sentence which equates the ${\rm wh}$ feature and the ${\rm invlink}$ feature of the final root node." [XTAG Research Group, 2001, 296]

Crucial difference:

- The trees for object extraction have the invlink.
- The trees for subject extraction do <u>not</u> have the invlink.

Effects:

- Only in non-embedded object extractions the wh-pronoun depends on inversion and vice versa.
- The same tree can be used for embedded and non-embedded object extraction.

Subject-auxiliary inversion - XTAG-analysis (6)

Root restriction

"A restriction is imposed on the **final root node** of any XTAG derivation of a tensed sentence which equates the ${\rm wh}$ feature and the ${\rm invlink}$ feature of the final root node." [XTAG Research Group, 2001, 296]

Crucial difference:

- The trees for object extraction have the invlink.
- The trees for subject extraction do <u>not</u> have the invlink.

Effects:

- Only in non-embedded object extractions the wh-pronoun depends on inversion and vice versa.
- The same tree can be used for embedded and non-embedded object extraction.

Relative clauses - Basics

"Relative clauses are NP modifiers involving extraction of an argument or an adjunct" (XTAG manual)

```
(28) a. the dog [which ate the cake] (wh-relatives)
b. the export exhibition [Muriel planned] (wh-less relatives)
c. [What; Sandy loves __;] is Kim. (free wh-relatives)
d. the girl [reading the magazine] (gerunds ???)
```

- (29) Somebody; lives nearby [who has a CD-burner];. (extraposition)
- ⇒ internal vs. external syntax

Relative clauses - XTAG-analysis (1) - Wh/that-relatives

(30) a. The dog; [that; ate the cake]
b. The person; [who; I talked to ___;].

(subject extraction) (preposition stranding)

internal syntax: same as wh-extraction external syntax: adjunction at a NP-node

Relative clauses - XTAG-analysis (1) - Wh/that-relatives

(30) a. The dog_i [that_i ate the cake] (subject extraction) b. The person_i [who_i | talked to ___i]. (preposition stranding)

internal syntax: same as wh-extraction external syntax: adjunction at a NP-node

Relative clauses - XTAG-analysis (2) - Wh-less relatives

(31) a. the export exhibition [Muriel planned/is planning] b. the export exhibition [(being) planned by Muriel]

internal syntax: same as wh-extraction, but missing wh-pronoun **external syntax:** adjunction at a NP-node

Relative clauses - XTAG-analysis (2) - Wh-less relatives

- (31) a. the export exhibition [Muriel planned/is planning]
 - b. the export exhibition [(being) planned by Muriel]

internal syntax: same as wh-extraction, but missing wh-pronoun **external syntax:** adjunction at a NP-node

Relative clauses - XTAG-analysis (3) - Free wh-relatives

Also known as Pseudoclefts!

(32) [What; Sandy loves $\underline{\hspace{1cm}}_i$] is Kim;.

internal syntax: same as wh-less relative clause
external syntax: adjunction at a wh-pronoun

⇒ XTAG covers only free wh-relatives in object position!

Relative clauses - XTAG-analysis (3) - Free wh-relatives

Also known as Pseudoclefts!

(32) [What; Sandy loves $\underline{\hspace{1cm}}_i$] is Kim;.

internal syntax: same as wh-less relative clause
external syntax: adjunction at a wh-pronoun

⇒ XTAG covers only free wh-relatives in object position!

Extraposed relative clauses

- (33) a. Somebody; lives nearby [who; has a CD-burner].
 - b. Karl hat mir [von der Kopie [einer Fälschung [eines Bildes [einer Frau ___j]]]] erzählt, [die schon lange tot ist]_i.

internal syntax: same as wh-extraction **external syntax:** <u>no</u> adjunction at a NP-node, but to the right periphery of the sentence

Extraposed relative clauses

- (33) a. Somebody; lives nearby [who; has a CD-burner].
 - b. Karl hat mir [von der Kopie [einer Fälschung [eines Bildes [einer Frau ___j]]]] erzählt, [die schon lange tot ist]_i.

internal syntax: same as wh-extraction external syntax: \underline{no} adjunction at a NP-node, but to the right periphery of the sentence

Extraction - Summary

- Topicalization and wh-extraction obtain a uniform analysis.
- Account for unbounded dependency via extended domain of locality + factoring of recursion
- Island constraints can be modelled rather naturally (wrt. TAG).
- Relative clauses are realized as auxiliary trees. Their internal structure is analysed as ordinary wh-extraction.

The inner structure of NPs

- The left side of nouns
 - Determiners
 - Adjectives
- The right side of nouns
 - PP-complements/-adjuncts of nouns
 - Relative clauses

The inner structure of NPs

D	А	А	N	PP
the left side			\iff	the right side

- The left side of nouns
 - Determiners
 - Adjectives
- The right side of nouns
 - PP-complements/-adjuncts of nouns
 - Relative clauses

The inner structure of NPs

- The left side of nouns
 - Determiners
 - Adjectives
- The right side of nouns
 - PP-complements/-adjuncts of nouns
 - Relative clauses

The left side of nouns - Determiners

'Determiners' labels a rather heterogenous set of items:

- articles (the, a)
- demonstratives (this, that)
- genitives (my, Bill's, that man's)
- quantifiers (all, some, every, most, many)

Determiners can be stacked:

- (34) all these many ideas
- \Rightarrow The pattern of determiner stacking is very complex

The left side of nouns - Determiners

'Determiners' labels a rather heterogenous set of items:

- articles (the, a)
- demonstratives (this, that)
- genitives (my, Bill's, that man's)
- quantifiers (all, some, every, most, many)

Determiners can be stacked:

- (34) all these many ideas
- \Rightarrow The pattern of determiner stacking is very complex!

The left side of nouns - Determiners - XTAG-analysis

XTAG uses β **Dnx** for all determiners:

XTAG uses a set of **9 features** to handle determiner stacking:

- definite:= $\{+, -\}$ marks definite determiners (the, this, that, ...)
- quant:= {+,-} marks quantifiers and non-definite articles (a, all, some, every, ...)
- plus: card(inality), gen(itive), wh, decreas(ing), const(ancy), compl(ement), and arg
- \Rightarrow We only consider $\operatorname{definite}$ and quan in what follows

The left side of nouns - Determiners - XTAG-analysis

XTAG uses β **Dnx** for all determiners:

XTAG uses a set of **9 features** to handle determiner stacking:

- definite:= $\{+, -\}$ marks definite determiners (the, this, that, ...)
- quant:= {+, -} marks quantifiers and non-definite articles (a, all, some, every, ...)
- plus: card(inality), gen(itive), wh, decreas(ing), const(ancy), compl(ement), and arg
- \Rightarrow We only consider definite and quan in what follows.

The left side of nouns - Determiners - XTAG-example

 \Rightarrow The feature structures are considerably simplified!

The left side of nouns - Adjectives

XTAG assumes that adjectives can appear in any order:

- (35) a. the colorless green ideas
 - b. the green colorless ideas

In XTAG, adjective trees adjoin to N, where no special feature is required:

The left side of nouns - Adjectives

XTAG assumes that adjectives can appear in any order:

- (35) a. the colorless green ideas
 - b. the green colorless ideas

In XTAG, adjective trees adjoin to N, where no special feature is required:

 β An:

The right side of nouns - PP-complements/adjuncts

XTAG assumes that PP-complements/adjuncts can appear in any order.

- (36) a. the ideas about language from Germanyb. the ideas from Germany about language
- In XTAG, PP-complements/adjuncts adjoin to NP, and no special feature is required:

The right side of nouns - PP-complements/adjuncts

XTAG assumes that PP-complements/adjuncts can appear in any order.

- (36) a. the ideas about language from Germanyb. the ideas from Germany about language
- In XTAG, PP-complements/adjuncts adjoin to NP, and no special feature is required:

 β nxPnx:

The inner structure of NPs - Putting the pieces together

 \Rightarrow The order of adjunction of determiners and PPs is not fixed!

Gerund NPs

NPs made from gerunds basically fall into two groups:

- The gerund verb is treated like a regular noun.
- ② The gerund verb and its complements/adjuncts preserve a sentential structure, but are treated as regular NP.

Determiner gerunds (aka derived nominalizations):

(37) a. [The proving of the theorem] succeeds

NP gerunds (aka sentential gerunds):

- (38) a. [Proving the theorem] succeeds
 - b. [John proving the theorem] succeeds
 - c. *[The Proving the theorem] succeeds

Gerund NPs

NPs made from gerunds basically fall into two groups:

- The gerund verb is treated like a regular noun.
- ② The gerund verb and its complements/adjuncts preserve a sentential structure, but are treated as regular NP.

Determiner gerunds (aka derived nominalizations):

- (37) a. [The proving of the theorem] succeeds.
 - b. *[The proving the theorem] succeeds.

NP gerunds (aka sentential gerunds):

- (38) a. [Proving the theorem] succeeds
 - b. [John proving the theorem] succeeds
 - c. *[The Proving the theorem] succeeds

Gerund NPs

NPs made from gerunds basically fall into two groups:

- The gerund verb is treated like a regular noun.
- ② The gerund verb and its complements/adjuncts preserve a sentential structure, but are treated as regular NP.

Determiner gerunds (aka derived nominalizations):

- (37) a. [The proving of the theorem] succeeds.
 - b. *[The proving the theorem] succeeds.

NP gerunds (aka sentential gerunds):

- (38) a. [Proving the theorem] succeeds.
 - b. [John proving the theorem] succeeds.
 - c. *[The Proving the theorem] succeeds.

Gerund NPs - XTAG-analysis of NP gerunds

Lectures on Government and Binding.

Culicover, P. W. and Jackendoff, R. (2005).

Simpler Syntax

Oxford University Press, Oxford.

Frank, R. (2002).

Phrase Structure Composition and Syntactic Dependencies MIT Press, Cambridge, MA.

Kiss, T. (2005).

Semantic constraints on relative clause extraposition.

Kroch, A. S. and Joshi, A. K. (1987).

Analyzing extraposition in a tree adjoining grammar.

In Huck, G. J. and Ojeda, A. E., editors, <u>Discontinous Constituency</u>, number 20 in Syntax and Semantics, pages 107–149. Academic Press, Inc.

Pollard, C. and Sag, I. A. (1994).

Head-Driven Phrase Structure Grammar.

University of Chicago Press, Chicago and London.

Prolo. C. A. (2002).

Generating the XTAG English grammar using metarules.

In Proceedings of COLING-02, pages 814-820, Taipei. Taiwan.

XTAG Research Group (2001).

A Lexicalized Tree Adjoining Grammar for English.

Technical report, Institute for Research in Cognitive Science, University of Pennsylvania, Philadelphia, PA.