
Tree Adjoining Grammars
TAG: Parsing and formal properties

Laura Kallmeyer & Benjamin Burkhardt

HHU Düsseldorf

WS 2017/2018

1 / 36

Outline

1 Parsing as deduction

2 CYK for TAG

3 Closure properties of TALs

4 Pumping Lemma for TAG

2 / 36

Parsing as deduction: Parsing Schemata (1)

Pereira and Warren (1983); Shieber et al. (1995); Sikkel (1997)
Parsing Schemata understand parsing as a deductive process.
Deduction of new items from existing ones can be described using
inference rules.
General form:

antecedent
consequent

side conditions

antecedent, consequent: lists of items
Application: if antecedent can be deduced and side condition holds,
then the consequent can be deduced as well.

3 / 36

Parsing as deduction: Parsing Schemata (2)

A parsing schema consists of

deduction rules;
an axiom (or axioms), can be written as a deduction rule with
empty antecedent;
and a goal item.

The parsing algorithm succeeds if, for a given input, it is possible to
deduce the goal item.

4 / 36

Parsing as deduction: Parsing schemata (3)

Example: CYK-Parsing for CFG in Chomsky Normal Form.
Goal item: [S, 1, n]
Deduction rules:
Scan:

[A, i, 1] A→ wi ∈ P

Complete: [B, i, l1], [C, i + l1, l2]
[A, i, l1 + l2]

A→ B C ∈ P

5 / 36

Parsing as deduction: Chart parsing (1)

Chart parsing:
We have two structures,

the chart C
and an agenda A.

Both are initialized as empty.

We start by computing all items that are axioms, i.e., that can be
obtained by applying rules with empty antecedents.
Starting from these items, we extend the set C as far as possible
by subsequent applications of the deduction rules.
The agenda contains items that are waiting to be used in
further deduction rules. It avoids multiple applications of the
same instance of a deduction rule.

6 / 36

Parsing as deduction: Chart parsing (2)

Chart parsing
C = A = ∅
for all items I resulting form a rule
application with empty antecedent set:

add I to C and to A
while A 6= ∅:

remove an item I from A
for all items I ′ deduced from I and items
from C as antecedents:

if I ′ /∈ C:
add I ′ to C and to A

if there is a goal item in C:
return true

else return false

7 / 36

CYK for TAG: Items (1)

CYK-Parsing for TAG:

First presented in Vijay-Shanker and Joshi (1985), formulation
with deduction rules in Kallmeyer and Satta (2009); Kallmeyer
(2010).
Assumption: elementary trees are such that each node has at
most two daughters. (Any TAG can be transformed into an
equivalent TAG satisfying this condition.)
The algorithm simulates a bottom-up traversal of the derived
tree.

8 / 36

CYK for TAG: Items (2)

At each moment, we are in a speci�c node in an elementary
tree and we know about the yield of the part below. Either
there is a foot node below, then the yield is separated into two
parts. Or there is no foot node below and the yield is a single
substring of the input.
We need to keep track of whether we have already adjoined at
the node or not since at most one adjunction per node can
occur. For this, we distinguish between a bottom and a top
position for the dot on a node. Bottom signi�es that we have
not performed an adjunction.

9 / 36

CYK for TAG: Items (3)

Item form: [γ, pt , i, f1, f2, j] where

γ ∈ I ∪ A,
p is the Gorn address of a node in γ (ε for the root, pi for the ith
daughter of the node at address p),
subscript t ∈ {>,⊥} speci�es whether substitution or
adjunction has already taken place (>) or not (⊥) at p, and
0 ≤ i ≤ f1 ≤ f2 ≤ j ≤ n are indices with i, j indicating the left
and right boundaries of the yield of the subtree at position p
and f1, f2 indicating the yield of a gap in case a foot node is
dominated by p. We write f1 = f2 = – if no gap is involved.

10 / 36

CYK for TAG: Inference rules (1)
Goal items: [α, ε>, 0, –, –, n] where α ∈ I

We need two rules to process leaf nodes while scanning their labels,
depending on whether they have terminal labels or labels ε:

Lex-scan:
[γ, p>, i, –, –, i + 1] l(γ, p) = wi+1

Eps-scan:
[γ, p>, i, –, –, i]

l(γ, p) = ε

•
wi+1

i i + 1

Lex-scan

•
ε

i i

Eps-scan

(Notation: l(γ, p) is the label of the node at address p in γ.)

11 / 36

CYK for TAG: Inference rules (2)

The rule foot-predict processes the foot node of auxiliary trees
β ∈ A by guessing the yield below the foot node:

Foot-predict:
[β, p>, i, i, j, j]

β ∈ A, p foot node address in β, i ≤ j

A

•
A*
i j

12 / 36

CYK for TAG: Inference rules (3)

When moving up inside a single elementary tree, we either move
from only one daughter to its mother, if this is the only daughter, or
we move from the set of both daughters to the mother node:

Move-unary: [γ, (p · 1)>, i, f1, f2, j]
[γ, p⊥, i, f1, f2, j]

node address p · 2 does not exist in γ

Move-binary: [γ, (p · 1)>, i, f1, f2, k], [γ, (p · 2)>, k, f ′1 , f ′2 , j]
[γ, p⊥, i, f1 ⊕ f ′1 , f2 ⊕ f ′2 , j]

(f ′ ⊕ f ′′ = f where f = f ′ if f ′′ = –, f = f ′′ if f ′ = –, and f is unde�ned
otherwise)

13 / 36

CYK for TAG: Inference rules (4)

Move-unary:

A

•
B

i j

A
•

B

i j

14 / 36

CYK for TAG: Inference rules (5)
Move-binary:

γ

A

B C
•

i k

γ

A

B C
•

jk

γ

A

B C

•

ji

15 / 36

CYK for TAG: Inference rules (6)

For nodes that do not require adjunction, we can move from the
bottom position of the node to its top position.

Null-adjoin: [γ, p⊥, i, f1, f2, j]
[γ, p>, i, f1, f2, j]

fOA(γ, p) = 0

A
•

i j

A
•

i j

16 / 36

CYK for TAG: Inference rules (9)

The rule substitute performes a substitution:

Substitute: [α, ε>, i, –, –, j]
[γ, p>, i, –, –, j]

l(α, ε) = l(γ, p)

A
α

•

i j

γ

A
•

i j

17 / 36

CYK for TAG: Inference rules (8)

The rule adjoin adjoins an auxiliary tree β at p in γ, under the
precondition that the adjunction of β at p in γ is allowed:

Adjoin: [β, ε>, i, f1, f2, j], [γ, p⊥, f1, f ′1 , f
′

2 , f2]
[γ, p>, i, f ′1 , f

′
2 , j]

β ∈ fSA(γ, p)

18 / 36

CYK for TAG: Inference rules (9)

Adjoin:

β

A
•

A*
f1 f2i j

γ

A
•

f1 f2

γ

A
•

i j

19 / 36

CYK for TAG: Complexity

Complexity of the algorithm: What is the upper bound for the
number of applications of the adjoin operation?

We have |A| possibilities for β, |A ∪ I | for γ, m for p where m is
the maximal number of internal nodes in an elementary tree.
The six indices i, f1, f ′1 , f ′2 , f2, j range from 0 to n.

Consequently, adjoin can be applied at most |A||A ∪ I |m(n+ 1)6

times and therefore, the time complexity of this algorithm is O(n6).

20 / 36

Closure properties (1)

One of the reasons why the TAG formalism is appealing from a
formal point of view is the fact that it has nice closure properties
Vijay-Shanker and Joshi (1985); Vijay-Shanker (1987).

Proposition
TALs are closed under union.

This can be easily shown as follows: Assume the two sets of
non-terminals to be disjoint. Then build a large TAG putting the
initial and auxiliary trees from the two grammars together.

21 / 36

Closure properties (2)

Proposition
TALs are closed under concatenation.

In order to show this, assume again the sets of non-terminals to be
disjoint. Then

build the unions of the initial and auxiliary trees,
introduce a new start symbol S and
add one initial tree with root label S and two daughters labeled
with the start symbols of the original grammars.

22 / 36

Closure properties (3)

Proposition
TALs are closed under Kleene closure.

The idea of the proof is as follows: We add an initial tree with the
empty word and an auxiliary tree that can be adjoined to the roots of
initial trees with the start symbol and that has a new leaf with the
start symbol.

23 / 36

Closure properties (4)

Proposition
TALs are closed under substitution.

In order to obtain the TAG that yields the language after
substitution, we replace all terminals by start symbols of the
corresponding TAGs.
As a corollary one obtains:

Proposition
TALs are closed under arbitrary homomorphisms.

24 / 36

Closure properties (5)

Proposition
TALs are closed under intersection with regular languages.

The proof in Vijay-Shanker (1987) uses extended push-down
automata (EPDA), the automata that recognize TALs. We will
introduce EPDAs later. Vijay-Shanker combines such an automaton
with the �nite state automaton for a regular language in order to
construct a new EPDA that recognizes the intersection.

25 / 36

Pumping lemma (1)

In CFLs, from a certain string length on, two parts of the string
can be iterated (“pumped”).
The proof idea is the following: Context-free derivation trees
from a certain maximal path length on have the property that a
non-terminal occurs twice on this path. Then the part between
the two occurrences can be iterated. This means that the strings
to the left and right of this part are pumped.

The same kind of iteration is possible in TAG derivation trees since
TAG derivation trees are context-free. This leads to a pumping
lemma for TALs Vijay-Shanker (1987).

26 / 36

Pumping lemma (2)

Iteration on TAG derivation trees:

β

β

β

β

The blue part can be iterated.

27 / 36

Pumping lemma (3)

In other words,

A derived auxiliary tree β′ can be repeatedly adjoined into
itself.
Into the lowest β′ (low in the sense of the derivation tree)
another auxiliary tree β′′ derived from β is adjoined.

28 / 36

Pumping lemma (4)

What does that mean for the derived tree?
Let n be the node in β′ to which β′ can be adjoined and to which the
�nal β′′ is adjoined as well. There are three cases for the
corresponding derived trees before adjoining the �nal β′′:

1 n is on the spine (i.e., on the path from the root to the foot
node),

2 n is on the left of the spine, or
3 n is on the right of the spine.

29 / 36

Pumping lemma (5)

Case 1:

w1 w2 w3 w4

x z

y

n

Case 2:

w1 w2 w3 w4

x z

y

n

 xwn
1v1wn

2yw
n
3v2wn

4 z xwn+1
1 v1w2v2w3(w2w4w3)

nyw4z

(Case 3 is exactly like case 2, except that everything is mirrored.)

30 / 36

Pumping lemma (6)

Proposition (Pumping Lemma for TAL)
If L is a TAL, then there is a constant c such that if w ∈ L and |w| ≥ c,
then there are x, y, z, v1, v2, w1, w2, w3, w4 ∈ T∗ such that

|v1v2w1w2w3w4| ≤ c, |w1w2w3w4| ≥ 1, and
one of the following three cases holds:

1 w = xw1v1w2yw3v2w4z and xwn
1v1wn

2yw
n
3v2wn

4 z is in the string
language for all n ≥ 0, or

2 w = xw1v1w2v2w3yw4z and xwn+1
1 v1w2v2w3(w2w4w3)

nyw4z is in
the string language for all n ≥ 0, or

3 w = xw1yw2v1w3v2w4z and xw1y(w2w1w3)
nw2v1w3v2wn+1

4 z is in
the string language for all n ≥ 0.

31 / 36

Pumping lemma (7)

As a corollary, the following weaker pumping lemma holds:

Proposition (Weak Pumping Lemma for TAL)

If L is a TAL, then there is a constant c such that if w ∈ L and |w| ≥ c,
then there are x, y, z, v1, v2,w1,w2,w3,w4 ∈ T∗ such that

|v1v2w1w2w3w4| ≤ c,

|w1w2w3w4| ≥ 1,
w = xv1yv2z, and

xwn
1v1wn

2yw
n
3v2wn

4 z ∈ L(G) for all n ≥ 0.

In this weaker version, the w1,w2,w3,w4 need not be substrings of
the original word w.

32 / 36

Pumping lemma (8)

A pumping lemma can be used to show that certain languages are
not in the class of the string languages satisfying the pumping
proposition.

Proposition
The double copy language L := {www |w ∈ {a, b}∗} is not a TAL.

33 / 36

Pumping lemma (9)

Proof: Assume that L is a TAL.
Then L′ := L∩ a∗b∗a∗b∗a∗b∗ = {anbmanbmanbm | n,m ≥ 0} is a TAL
as well. Assume that L′ satis�es the weak pumping lemma with a
constant c.
Consider the word w = ac+1bc+1ac+1bc+1ac+1bc+1.
None of the wi, 1 ≤ i ≤ 4 from the pumping lemma can contain both
as and bs. Furthermore, at least three of them must contain the same
letters and be inserted into the three di�erent ac+1 respectively or
into the three di�erent bc+1. This is a contradiction since then either
|v1| ≥ c + 1 or |v2| ≥ c + 1.

34 / 36

Pumping lemma (10)

Another example of a language that can be shown not to be a TAL,
using the pumping lemma, is L5 := {anbncndnen | n ≥ 0}.

35 / 36

Kallmeyer, L. (2010). Parsing Beyond Context-Free Grammars. Cognitive Technologies. Springer, Heidelberg.

Kallmeyer, L. and Satta, G. (2009). A polynomial-time parsing algorithm for tt-mctag. In Proceedings of ACL, Singapore.

Pereira, F. C. N. and Warren, D. (1983). Parsing as deduction. In 21st Annual Meeting of the Association for Computational
Linguistics, pages 137–âĂŞ144, MIT, Cambridge, Massachusetts.

Shieber, S. M., Schabes, Y., and Pereira, F. C. N. (1995). Principles and implementation of deductive parsing. Journal of Logic
Programming, 24(1 and 2):3–36.

Sikkel, K. (1997). Parsing Schemata. Texts in Theoretical Computer Science. Springer-Verlag, Berlin, Heidelberg, New York.

Vijay-Shanker, K. (1987). A Study of Tree Adjoining Grammars. PhD thesis, University of Pennsylvania.

Vijay-Shanker, K. and Joshi, A. K. (1985). Some computational properties of Tree Adjoining Grammars. In Proceedings of the
23rd Annual Meeting of the Association for Computational Linguistics, pages 82–93.

	Parsing as deduction
	CYK for TAG
	Closure properties of TALs
	Pumping Lemma for TAG

