
Tree Adjoining Grammars

Feature Structure Based TAG

Laura Kallmeyer & Benjamin Burkhardt

HHU Düsseldorf

WS 2017/2018

1 / 20



Outline

1 Why feature structures?

2 Basics of feature structure logic

3 Feature Structure based TAG (FTAG)

2 / 20



Why feature structures?

Idea: Instead of atomic categorial symbols, feature structures are

used as non-terminal nodes.

Two reasons with respect to TAG:

generalizing agreement, case assignment etc. (via

underspeci�cation)

modelling adjunction constraints

⇒ meaningful generalizations

⇒ smaller grammars that are easier to maintain

3 / 20



Why feature structures? Agreement

Example without feature structures:

NPpl/acc

grammars

NPpl/nom

grammars

S

VP

Vpl

leak

NPpl/nom

S

VP

V¬3/sg

leak

NP¬3/sg/nom

The generalization that the �nite verb and its subject agree in

number and person is not captured.

Every morphological alternative gives rise to a new elementary

tree!

4 / 20



Why feature structures? Agreement

Example without feature structures:

NPpl/acc

grammars

NPpl/nom

grammars

S

VP

Vpl

leak

NPpl/nom

S

VP

V¬3/sg

leak

NP¬3/sg/nom

The generalization that the �nite verb and its subject agree in

number and person is not captured.

Every morphological alternative gives rise to a new elementary

tree!

4 / 20



Why feature structures? Adjunction constraints

Example without feature structures:

βis
VP

VP*V

is

S

VPOA({βis,βbeen,... })

V

leaking

NP

The generaliztion that some form of the auxiliary be has to be

adjoined is not captured.

Things get even worse when combining agreement and

adjunction constraints. (A plural subject forbids for instance

adjunction of βis, ...)

5 / 20



Why feature structures? Adjunction constraints

Example without feature structures:

βis
VP

VP*V

is

S

VPOA({βis,βbeen,... })

V

leaking

NP

The generaliztion that some form of the auxiliary be has to be

adjoined is not captured.

Things get even worse when combining agreement and

adjunction constraints. (A plural subject forbids for instance

adjunction of βis, ...)

5 / 20



Features structures

Features structures are

sets of features (e.g. case) and unique values (e.g. nom)

feature structures are often represented as attribute value
matrices (AVM)
cat V

vform �nite

agr

[
num sg

pers 3

]


feature values can be

atomic (e.g. for vform)

feature structures (e.g. for agr)

A feature structure is called recursive if there is an attribute

attr that occurs inside the value of a higher attribute attr .

TAG uses non-recursive feature structures.

6 / 20



Uni�cation

Feature structures are combined by uni�cation.

Uni�cation is a (partial) operation on feature structures.

Intuitively: the operation of combining two feature structures

such that the new feature structure contains all the information

of the original two, and nothing more

e.g.

 cat vp

agr

[
num pl

]t cat vp

agr

[
pers 3

]=


cat vp

agr

[
num pl

pers 3

]
Uni�cation can fail (partial operation).

e.g.

[
cat np

num sg

]
t
[
cat np

num pl

]
= FAIL

7 / 20



Uni�cation

Subsumption (F1 v F2)

A feature structure F1 subsumes (v) another feature structure F2, i�

all the information that is contained in F1 is also contained in F2.

Example: Subsumption[
cat np

num sg

]
v
cat np

case acc

num sg


cat np

agr

[
num sg

]v 
cat np

agr

[
num sg

pers 3

]

8 / 20



Uni�cation

Subsumption (F1 v F2)

A feature structure F1 subsumes (v) another feature structure F2, i�

all the information that is contained in F1 is also contained in F2.

Example: Subsumption[
cat np

num sg

]
v
cat np

case acc

num sg


cat np

agr

[
num sg

]v 
cat np

agr

[
num sg

pers 3

]

8 / 20



Uni�cation

Uni�cation (F t G)

The uni�cation of two feature structures F and G is (if it exists) the

smallest feature structure that is subsumed by both F and G: F t G is

the feature structure with the following three properties:

(1) F v (F t G)

(2) G v (F t G)

(3) If H is a feature structure such that F v H and G v H , then

(F t G) v H .

Example: Uni�cationcat np

agr

[
num sg

]t case acc

agr

[
pers 3

]=


cat np

case acc

agr

[
num sg

pers 3

]


cat np

agr

[
num sg

]t cat vp

agr

[
pers 3

]= ⊥

9 / 20



Uni�cation

Uni�cation (F t G)

The uni�cation of two feature structures F and G is (if it exists) the

smallest feature structure that is subsumed by both F and G: F t G is

the feature structure with the following three properties:

(1) F v (F t G)

(2) G v (F t G)

(3) If H is a feature structure such that F v H and G v H , then

(F t G) v H .

Example: Uni�cationcat np

agr

[
num sg

]t case acc

agr

[
pers 3

]=


cat np

case acc

agr

[
num sg

pers 3

]


cat np

agr

[
num sg

]t cat vp

agr

[
pers 3

]= ⊥

9 / 20



Uni�cation

Uni�cation (F t G)

The uni�cation of two feature structures F and G is (if it exists) the

smallest feature structure that is subsumed by both F and G: F t G is

the feature structure with the following three properties:

(1) F v (F t G)

(2) G v (F t G)

(3) If H is a feature structure such that F v H and G v H , then

(F t G) v H .

Example: Uni�cationcat np

agr

[
num sg

]t case acc

agr

[
pers 3

]=


cat np

case acc

agr

[
num sg

pers 3

]


cat np

agr

[
num sg

]t cat vp

agr

[
pers 3

]= ⊥

9 / 20



Reentrancies

Several paths can lead to the same node ⇒ to the same value.

⇒ hence, they share that value.

This property of sharing value(s) is called reentrancy
In AVMs: expressed by coindexing the shared values (boxed

numbers).[
attr1

1

attr2
1

] [
attr1

1 val1

attr2
1

] [
attr1

1

[
attr2

1

]]

FTAG uses acyclic reentrancies!

Reentrancies can occur between features structures (in a tree):

[
attr1

1

][
attr1

1

]

10 / 20



Reentrancies

Note that

Feature structues in FTAG are untyped.

The feature geometry is such that there is only a �nite number

of possible feature structures.

Therefore, FTAG can be shown to be strongly equivalent to

TAG without feature structures.

11 / 20



Uni�cation: examples


agr

[
num sg

]
subj

[
agr

[
num sg

]]

t
[
subj

[
agr

[
pers 3

]]]
=


agr

[
num sg

]
subj

[
agr

[
num sg

pers 3

]]


agr 1

[
num sg

]
subj

[
agr 1

]

t
[
subj

[
agr

[
pers 3

]]]
=

agr
1

[
num sg

pers 3

]
subj

[
agr 1

]


for any feature structure F : F t [ ] = [ ] t F = F

the empty feature structure is the identity element for

uni�cation

12 / 20



Uni�cation: examples


agr

[
num sg

]
subj

[
agr

[
num sg

]]

t
[
subj

[
agr

[
pers 3

]]]
=


agr

[
num sg

]
subj

[
agr

[
num sg

pers 3

]]


agr 1

[
num sg

]
subj

[
agr 1

]

t
[
subj

[
agr

[
pers 3

]]]
=

agr
1

[
num sg

pers 3

]
subj

[
agr 1

]


for any feature structure F : F t [ ] = [ ] t F = F

the empty feature structure is the identity element for

uni�cation

12 / 20



Uni�cation: examples


agr

[
num sg

]
subj

[
agr

[
num sg

]]

t
[
subj

[
agr

[
pers 3

]]]
=


agr

[
num sg

]
subj

[
agr

[
num sg

pers 3

]]


agr 1

[
num sg

]
subj

[
agr 1

]

t
[
subj

[
agr

[
pers 3

]]]
=

agr
1

[
num sg

pers 3

]
subj

[
agr 1

]


for any feature structure F : F t [ ] = [ ] t F = F

the empty feature structure is the identity element for

uni�cation

12 / 20



Uni�cation: examples


agr

[
num sg

]
subj

[
agr

[
num sg

]]

t
[
subj

[
agr

[
pers 3

]]]
=


agr

[
num sg

]
subj

[
agr

[
num sg

pers 3

]]


agr 1

[
num sg

]
subj

[
agr 1

]

t
[
subj

[
agr

[
pers 3

]]]
=

agr
1

[
num sg

pers 3

]
subj

[
agr 1

]


for any feature structure F : F t [ ] = [ ] t F = F

the empty feature structure is the identity element for

uni�cation

12 / 20



TAG with feature structures

Idea: feature structures as non-terminal nodes.

At substitution/adjunction the feature structures of the participating

nodes are uni�ed


cat np

agr

[
num sg

pers 3

]
case nom



she

[
cat s

]


cat vp

agr 1

[
num sg

pers 3

]

sings

cat np

agr 1

case nom

↓

[
cat s

]


cat vp

agr 1

[
num sg

pers 3

]

sings


cat np

agr 1

[
num sg

pers 3

]
case nom



she

13 / 20



TAG with feature structures

Idea: feature structures as non-terminal nodes.

At substitution/adjunction the feature structures of the participating

nodes are uni�ed


cat np

agr

[
num sg

pers 3

]
case nom



she

[
cat s

]


cat vp

agr 1

[
num sg

pers 3

]

sings

cat np

agr 1

case nom

↓

[
cat s

]


cat vp

agr 1

[
num sg

pers 3

]

sings


cat np

agr 1

[
num sg

pers 3

]
case nom



she

13 / 20



FTAG

Feature-structure based TAG (FTAG Vijay-Shanker & Joshi, 1988):

annotate each substitution node with one and each other node

with two feature structures

adjunction splits the feature structures

top features: the relation of the node to the tree above it

bottom features: the relation of the node to the tree below it

FTAG description of node η

1. The relation of η to its supertree is called feature structure tη .

2. The relation of η to its descendants is called feature structure bη .

In the �nal derived tree top and bottom features are uni�ed for all

nodes

14 / 20



FTAG: Substitution

Substitution in FTAG

The top features of the root of the tree to substitute unify with the

top features of the substitution node.

Y
[t1]
[b]

X

. . .
Y↓[t2] ⇒

X

. . .
Y
[t1]t[t2]
[b]

substitution nodes (Y↓) have only top features

15 / 20



FTAG: Adjunction

Adjunction in FTAG

The top features of the root of the auxiliary tree unify with the top

features of the adjunction node, and the bottom features of the

footnode of the auxiliary tree unify with the bottom features of the

adjunction node.

X

Y
[ty ]
[by ]

. . .

Y
[tr ]
[br ]

Z
Y
∗[tf ]
[bf ]

⇒

X

Y
[ty ]t[tr ]
[br ]

Z
Y

[tf ]
[by ]t[bf ]

. . .

16 / 20



Adjunction constraints

Modeling adjunction constraints with features:

SA: top and bottom are uni�able[
cat vp

]
[
cat vp

]
OA + SA: feature mismatch between top and bottom[
cat vp

mode ind

]
[
cat vp

mode ger

]

NA: top and bottom are uni�able, but there is no auxiliary tree

in the grammar that can be uni�ed with them

17 / 20



Adjunction constraints

Modeling adjunction constraints with features:

SA: top and bottom are uni�able[
cat vp

]
[
cat vp

]

OA + SA: feature mismatch between top and bottom[
cat vp

mode ind

]
[
cat vp

mode ger

]

NA: top and bottom are uni�able, but there is no auxiliary tree

in the grammar that can be uni�ed with them

17 / 20



Adjunction constraints

Modeling adjunction constraints with features:

SA: top and bottom are uni�able[
cat vp

]
[
cat vp

]
OA + SA: feature mismatch between top and bottom[
cat vp

mode ind

]
[
cat vp

mode ger

]

NA: top and bottom are uni�able, but there is no auxiliary tree

in the grammar that can be uni�ed with them

17 / 20



Adjunction constraints

Modeling adjunction constraints with features:

SA: top and bottom are uni�able[
cat vp

]
[
cat vp

]
OA + SA: feature mismatch between top and bottom[
cat vp

mode ind

]
[
cat vp

mode ger

]

NA: top and bottom are uni�able, but there is no auxiliary tree

in the grammar that can be uni�ed with them

17 / 20



FTAG example for OA

(1) John is singing.

NP[][agr=[pers=3,num=sg]]
‘John’

S

NP[agr= 1 ] VP[agr= 1 ,mode=ind][mode=ger]
V

‘singing’

VP[agr= 2 ,mode= 3 ]
V[mode= 3 ind][agr= 2 [pers=3,num=sg]] VP∗[mode=ger]

‘is’

The features are inspired by the XTAG grammar (XTAG Research Group,

2001).

The cat feature is taken to be special, in particular it is usually the same in

top and bottom. We therefore notate it as the main category of a node,

outside the feature structures.

18 / 20



FTAG example for OA

(1) John is singing.

NP[][agr=[pers=3,num=sg]]
‘John’

S

NP[agr= 1 ] VP[agr= 1 ,mode=ind][mode=ger]
V

‘singing’

VP[agr= 2 ,mode= 3 ]
V[mode= 3 ind][agr= 2 [pers=3,num=sg]] VP∗[mode=ger]

‘is’

Result of derivation: S

NP[agr= 1 ][agr=[pers=3,num=sg]] VP[agr= 1 ,mode=ind][agr= 2 ,mode= 3 ]
‘John’ V[mode= 3 ind][agr= 2 [pers=3,num=sg]] VP[mode=ger][mode=ger]

‘is’ V

‘singing’
18 / 20



FTAG example for OA

(1) John is singing.

NP[][agr=[pers=3,num=sg]]
‘John’

S

NP[agr= 1 ] VP[agr= 1 ,mode=ind][mode=ger]
V

‘singing’

VP[agr= 2 ,mode= 3 ]
V[mode= 3 ind][agr= 2 [pers=3,num=sg]] VP∗[mode=ger]

‘is’

After top-bottom uni�cations:

S

NP[agr= 1 ] VP[agr= 1 [pers = 3, num= sg]
mode= ind ]

‘John’ V[agr= 1

mode= ind] VP[mode= ger]
‘is’ V

‘singing’
18 / 20



Summary

Feature structures as nodes allow to abstract away from

agreement properties by underspeci�cation. Linguistic

generalizations an be expressed more conveniently.

Adjunction constraints can be enoded into feature structures.

The feature structures of FTAG do not add expressive power,

hence FTAG and TAG are weakly equivalent.

19 / 20



References

Vijay-Shanker, K. & Aravind K. Joshi. 1988. Feature structures based tree adjoining grammar.

In Proceedings of coling, 714–719. Budapest.

XTAG Research Group. 2001. A Lexicalized Tree Adjoining Grammar for English. Tech. rep.

Institute for Research in Cognitive Science Philadelphia. Available from

ftp://ftp.cis.upenn.edu/pub/xtag/release-2.24.2001/tech-
report.pdf.


