Tree Adjoining Grammars
Syntax: Complementation in LTAG

Laura Kallmeyer & Benjamin Burkhardt

HHU Düsseldorf

WS 2017/2018
Outline

1. NP- and PP-complements

2. Sentential complements
 - Control
 - Raising
 - Small clauses
Complementation with NPs and PPs: The base cases

Complementation with NPs:

\[\alpha_{nx0V}: \]
\[
S \hspace{1cm} S
\]
\[
NP \hspace{1cm} VP \hspace{1cm} NP \hspace{1cm} VP
\]
\[
V \diamond \hspace{1cm} V \diamond \hspace{1cm} NP
\]

\[\alpha_{nx0Vnx1}: \]
\[
S \hspace{1cm} S
\]
\[
NP \hspace{1cm} VP \hspace{1cm} NP \hspace{1cm} VP
\]
\[
V \diamond \hspace{1cm} V \diamond \hspace{1cm} NP
\]

\[\alpha_{nx0Vnx2nx1}: \]
\[
S \hspace{1cm} S
\]
\[
NP \hspace{1cm} VP \hspace{1cm} NP \hspace{1cm} VP
\]
\[
V \diamond \hspace{1cm} V \diamond \hspace{1cm} NP \hspace{1cm} NP
\]

Complementation with PPs: substitution or co-anchor

\[\alpha_{nx0Vnx1pnx2}: \]
\[
S \hspace{1cm} S
\]
\[
NP \hspace{1cm} VP \hspace{1cm} NP \hspace{1cm} VP
\]
\[
V \diamond \hspace{1cm} V \diamond \hspace{1cm} NP \hspace{1cm} VP
\]

\[\alpha_{nx0Vnx1Pnx2}: \]
\[
S \hspace{1cm} S
\]
\[
NP \hspace{1cm} VP \hspace{1cm} NP \hspace{1cm} VP
\]
\[
V \diamond \hspace{1cm} V \diamond \hspace{1cm} NP \hspace{1cm} NP
\]
Case assignment and subject-verb agreement

Two modes of case assignment in tree templates:

- Direct case assignment with case
- Indirect case assignment with assign-case

⇒ by the lexical anchor (during lexical insertion) or by adjoining trees

\[anx0Vnx1: \]

\[
\begin{array}{c}
S \\
\mid \text{ASSIGN-CASE} & 3 \\
\mid \text{AGR} & 4 \\
\end{array}
\]

\[
\begin{array}{c}
\text{NP} \downarrow \\
\mid \text{CASE} & 3 \\
\mid \text{AGR} & 4 \\
\end{array}
\]

\[
\begin{array}{c}
\text{VP} \\
\mid \text{ASSIGN-CASE} & 3 \\
\mid \text{AGR} & 4 \\
\mid \text{ASSIGN-CASE} & 1 \\
\mid \text{AGR} & 2 \\
\end{array}
\]

\[
\begin{array}{c}
\text{V} \diamond \\
\mid \text{ASSIGN-CASE} & 1 \\
\mid \text{AGR} & 2 \\
\end{array}
\]

\[
\begin{array}{c}
\text{NP} \downarrow \\
\mid \text{CASE} & \text{acc} \\
\end{array}
\]
Case assignment and subject-verb agreement
Case assignment and subject-verb agreement
Sentential complement structures

In XTAG, a distinction is drawn between sentential complements with (i) finite verbs, sentential complements with (ii) to-infinitives, and (iii) small clauses.

(1) a. Kim said [that Sandy left]. (finitive)
b. Dana preferred [for Pat to get the job]. (to-infinitive)
c. Leslie wanted [Chris to go].
d. René tried [PRO to win].
e. [Kim] seems [to be happy].
f. Tracy proved [the theorem false]. (small clauses)
g. Bo considered [Lou a friend].
h. Gerry expects [those children off the ship]
(from Pollard and Sag (1994))
To-infinitives: Controlling and Raising its subject

XTAG assumes different syntactic structures/derivations for superficially very similar sentences:

(2) a. John tries [PRO to leave].
 b. [John] seems [to leave].

Why is that?

XTAG adopts the projection principle from GB Chomsky (1981), according to which “meaning maps transparently into syntactic structure” (Culicover and Jackendoff, 2005, 47), such that the following equivalence relation holds:

Complement of the verb \iff Argument of the predicate

\Rightarrow θ-criterion for TAG from Frank (2002)
To-infinities: Controlling and Raising its subject

Complement of the verb \iff Argument of the predicate

(3) a. John tries to leave
 b. \(\text{try}(\text{John}, \text{leave}(\text{John})) \)

\Rightarrow \textit{John} is the complement of both \textit{tries} and \textit{to leave}.
\Rightarrow Empty element (PRO) is used to avoid complement sharing.
\Rightarrow PRO needs to be “controlled”.
\Rightarrow \textbf{Control}

(4) a. John seems to leave
 b. \(\text{seem}(\text{leave}(\text{John})) \)

\Rightarrow \textit{John} is not the complement of \textit{seems}.
\Rightarrow Argumenthood is the primary syntactic factor, not agreement!
\Rightarrow An alien complement looks like a regular complement.
\Rightarrow \textbf{Raising}
Raising or Control?

identify the predicate-argument structure of the verb and its sentential complement

shared subject/object
- control

no shared subject/object
- raising

Classification game:

(5) a. They asked Jan to leave. (object control)
b. Bo turns out to be obnoxious. (subject raising)
c. Sandy is willing to go to the movies. (subject control)
d. Terry was expected to win the prize. (subject raising)
e. Kim believed a unicorn to be approaching. (object raising)
Raising or Control?

identify the predicate-argument structure of the verb and its sentential complement

shared subject/object
control

no shared subject/object

raising

- Pitfalls and special cases:

(6) a. It is important for Bill to dance. (PP-raising?)
 b. Christy left the party early to go to the airport. (modifier?)
 c. Peter kept standing in the doorway. (no to-infinitive)
Control verbs establish the coreference between their subject/object (= the controller) and the unexpressed subject (PRO) of their sentential complement.

(7) a. John\textsubscript{i} tried [PRO\textsubscript{i} to leave]. \hspace{1cm} \text{(subject control)}

 b. John persuaded him\textsubscript{i} [PRO\textsubscript{i} to leave]. \hspace{1cm} \text{(object control)}

 c. *There\textsubscript{i} tries [PRO\textsubscript{i} to be disorder after a revolution].

⇒ Control verbs assign a semantic role to the controller!
Control verbs - XTAG-Analysis

- **CONTROL** feature for coindexation
- PRO tree or PRO as coanchor of the verb

Example for subject control:

```
S [ ]
   [ ]
   MODE ind

NP↓[CONTROL 1] VP
   V tried
   S* [CONTROL MODE 2]
   inf

S [ ]
   [ ]
   CONTROL 2
   MODE inf

NP[CONTROL 2] VP
   PRO
   V
to leave
```
Control verbs - XTAG-Analysis

- CONTROL feature for coindexation
- PRO tree or PRO as coanchor of the verb

Example for object control:

```
S[ ]
   [MODE ind]
   NP↓
   V
   persuaded
   NP[CONTROL 1]
   S*[CONTROL MODE 1 inf]
   VP
   NP[CONTROL 2]
   inf
   S[ ]
   PRO
   V
   to leave
```
Raising verbs determine case and agreement properties of the subject complement of the (non-finite) sentential complement. Since the “raised” constituent is no immediate part of the argument structure of the raising verb, this is called *Exceptional Case Marking (ECM).*

(8) a. [John] seems [to leave]. (subject raising)
 b. Sue expects [him to leave]. (object raising)
 c. [There] seems [to be disorder after a revolution].
 d. John expected [it to rain].

⇒ **allow for expletive pronouns** *(it/there)*

(9) John seems unhappy.
 *John tries unhappy.

⇒ **allow for small clauses**
Raising verbs - XTAG-Analysis (1)

- no PRO
- The “raised” constituent is still part of the to-infinitive!
- ECM via ASSIGN-CASE feature

Example for subject raising:

\[
\begin{array}{c}
\text{VP} \left[\right] \\
\quad \text{ASSIGN-CASE nom} \\
\quad \text{AGR pers 3} \\
\quad \text{AGR num sg} \\
\quad \text{AGR 3RDSING +} \\
\quad \text{MODE ind} \\
\quad \text{V} \\
\quad \text{VP* [MODE inf]} \\
\end{array} \quad \begin{array}{c}
\text{S} \left[\right] \\
\quad \text{ASSIGN-CASE} \left[\right] \\
\quad \text{AGR} \left[\right] \\
\quad \text{MODE} \left[\right] \\
\quad \text{NP \downarrow \left[\right]} \\
\quad \text{CASE 3} \\
\quad \text{AGR 4} \\
\quad \text{V} \\
\quad \text{VP \left[\right]} \\
\quad \text{ASSIGN-CASE 3} \\
\quad \text{AGR 1} \\
\quad \text{MODE 5} \\
\quad \text{NP \downarrow \left[\right]} \\
\quad \text{CASE 3} \\
\quad \text{AGR 4} \\
\quad \text{V} \\
\quad \text{to leave} \\
\end{array}
\]
Example for object raising:

(10) We expect him to leave.
Question:
What complements does the verb consider take?

(11) a. We consider [Kim to be an acceptable candidate].
 b. We consider [Kim an acceptable candidate].
 c. We consider [Kim quite acceptable].
 d. We consider [Kim among the most acceptable candidates].
 e. *We consider [Kim as an acceptable candidate].

Similar verbs: prove, expect, rate, count, want

1. One sentential complement (small clause), where to be can be omitted
2. A noun and a predicative phrase
Small clauses - Pro and contra (1)

Pro:

- Homomorphism between argument structure and complement structure (in GB: Projection Principle, UTAH; in TAG: \(\theta\)-Criterion)

- Uniformity of the subcategorized constituents:

 Instead of NP, AP, PP, IP/S, ... as possible categories of the complements, there is only one complement category.
Small clauses - Pro and contra (2)

Contra:

- Passivization (object-to-subject shift)

(12) We considered [Kim quite acceptable].
Kim was considered [___ quite acceptable].

- Idiosyncratic restrictions on the predicative phrase

(13) a. I consider/*expect [this Island a good vacation spot].
 b. I consider/*expect [this man stupid].
 I expect [that man to be stupid].
 c. We rate/*consider [Kim as quite acceptable]

⇒ The verb should be indifferent to the categorial status of the small clause predicate!
Small clauses have the structure of regular sentences, except that the verb is missing.

⇒ The superordinate verb is represented as auxiliary tree that adjoins at VP or S.
We consider Kim acceptable.
(15) Kim seems acceptable.
Raising and Control - Summary

<table>
<thead>
<tr>
<th>control verbs</th>
<th>raising verbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>assign semantic role (to the controlled subject)</td>
<td>assign no semantic role (to the raised subject)</td>
</tr>
<tr>
<td>PRO (incomplete sent. complement)</td>
<td>no PRO (complete sent. complement)</td>
</tr>
<tr>
<td>assign no case (to the controlled subject)</td>
<td>assign case via ECM (to the raised subject)</td>
</tr>
<tr>
<td>no small clauses</td>
<td>small clauses</td>
</tr>
<tr>
<td>XTAG: adjoin to S</td>
<td>XTAG: adjoin to S or VP</td>
</tr>
</tbody>
</table>

