
Parsing Beyond CFG
Homework 4: TAG Parsing, Abgabe 22.05.2013

Laura Kallmeyer, Patrick Hommers

SS 2013, Heinrich-Heine-Universität Düsseldorf

Question 1 (TAG CYK parsing)

Consider the TAG consisting of the two trees α and β:

α1 α2 β

S

a T

T

b

S

S* c

Give the trace of the CYK parse (the version from the course slides) of w = abc, i.e., a list of all items
that get generated. Explain for each item, by which operation it is obtained and from which antecedent
items.

Solution:

Item Rule
1. [α1, 1>, 0,−,−, 1] lex-scan (a)
2. [α2, 1>, 1,−,−, 2] lex-scan (b)
3. [β, 2>, 2,−,−, 3] lex-scan (c)
4. [β, 1>, 0, 0, 2, 2] foot-predict
5. [α2, ε⊥, 1,−,−, 2] move-unary from 2.
6. [α2, ε>, 1,−,−, 2] null-adjoin from 5.
7. [α1, 2>, 1,−,−, 2] substitute 6.
8. [α1, ε⊥, 0,−,−, 2] move binary from 1. and 7.
9. [α1, ε>, 0,−,−, 2] null-adjoin from 8.
10. [β, ε⊥, 0, 0, 2, 3] move-binary from 3. and 4.
11. [β, ε>, 0, 0, 2, 3] null-adjoin from 10.
12. [α1, ε>, 0,−,−, 3] adjoin 11. in 8.

Question 2 Assume the following definitions:

In a tree γ, a node n1 with address p1 linearly precedes a node n2 with address p2 (notation n1 ≺ n2) iff
there are prefixes pi and pj of p1 and p2 respectively (p ∈ IN∗, i, j ∈ IN) such that i < j.

Let us call an auxiliary tree β a left auxiliary tree iff there is no node in β that is linearly preceded by the
foot node.

Now define a left-auxiliary TAG as a TAG where all auxiliary trees are left auxiliary trees.

Obviously, in a left-auxiliary TAG, the yield of an auxiliary tree comprises only one substring of the input
string. (Not two, as is the case in general in TAG.) This makes parsing less complex.

Modify the Earley algorithm under the assumption that we have a left-auxiliary TAG. (Give the modified
deduction rules.)

Solution:

In our items we have only three indices, i, j, k, where i and k delimit the total span of the relevant part
of the tree (these were i and l in the original algorithm). j gives the start position of the part below the
foot node for left auxiliary trees.

The Scan and Predict rules remain more or less the same except for the reduced number of indices:

ScanTerm
[α, p, la, i, j, k, 0]

[α, p, ra, i, j, k + 1, 0]
α(p) = wk+1



Scan-ε
[α, p, la, i, j, k, 0]
[α, p, ra, i, j, k, 0]

α(p) = ε

PredictAdjoinable
[α, p, la, i, j, k, 0]
[β, 0, la, k,−, k, 0] β ∈ fSA(α, p)

PredictNoAdj
[α, p, la, i, j, k, 0]
[α, p, lb, k,−, k, 0] fOA(α, p) = 0

PredictAdjoined
[β, p, lb, k,−, k, 0]
[δ, p′, lb, k,−, k, 0] p = foot(β), β ∈ fSA(δ, p′)

For the Complete rule, we obtain the following:

CompleteFoot

[α, p, rb, i, j, k, 1][β, p′, lb, i,−, i, 0]
[β, p′, rb, i, i, k, 0]

p′ = foot(β), β ∈ fSA(α, p)

CompleteNode (remains the same)

[β, p, rb, i, j, k, sat?][β, p, la, h,−, i, 0]
[β, p, ra, h, j, k, 0]

β(p) ∈ N

For the Adjoin rule, we obtain the following:

Adjoin

[β, 0, ra, i, j, k, 0][α, p, rb, j, l, k, 0]
[α, p, rb, i, l, k, 1]

β ∈ fSA(α, p)

The Move rules and also the Initialize rule and the goal item remain the same, except for the reduced
number of indices.

2


