
Parsing Beyond CFG
Homework 3: TALs and TAG Parsing (CYK)

Laura Kallmeyer, Tatiana Bladier
Sommersemester 2018

Question 1 (Formal properties of TALs)

a) Using pumping lemma for tree-adjoining languages (TALs), show that the language L1 is
not a TAL:

L1 = {w | w ∈ {a, b, c, d, e}∗, w = anbncndnen and n ≥ 0}

Solution:

If we assume that L1 is a TAL, L1 must satisfy the pumping lemma for TALs for some
constant p. Let w = ap+1bp+1cp+1dp+1ep+1. In this case, according to the weak pumping
lemma for TALs, there exist the substrings w1, w2, w3, and w4 (of which at least one
should not be empty) such that these substrings can be iterated repeatedly into w to create
new words in L1. Due to the condition that every word in the language L1 contains an
equal number of five different terminal symbol, one of the substrings w1, w2, w3, or w4
must contain more than two different symbols. However, if we iterate a substring with two
different terminal symbols at least once, we won’t be able to produce a word with equal
numbers of five different symbols. This means that the obtained word would not belong to
L1. This is a contradiction to the assumption that L1 belongs to the class of TALs.

b) Show that the following language L2 is also not a TAL:

L2 = {w | w ∈ {a, b, c, d, e}∗, |w|a = |w|b = |w|c = |w|d = |w|e}

Hint: Intersect L2 with a suitable regular language. You can assume that we have already
proved that the language L1 = {w | w ∈ {a, b, c, d, e}∗, w = anbncndnen and n ≥ 0} is not a
TAL.

Solution:

We assume that L2 is a TAL. Then, since TALs are closed under intersection with regular
languages, the language L4 resulting from the intersection of L2 with the regular language
L3 = {w | w ∈ {a, b, c, d, e}∗, w = a∗b∗c∗d∗e∗} should also be a TAL:

L4 = L2 ∩ L3 = {w | w ∈ {a, b, c, d, e}∗, w = anbncndnen and n ≥ 0}

L4 must be a TAL as well. However, since we have already proved that L4 is not a TAL.
Therefore, our assumption that L2 is a TAL is false.

Question 2 (TAG CYK parsing)

Consider the TAG consisting of the following elementary trees αs, αt, and βt:

αs

S

T↓ c

αt

TOA

a

βt

TNA

T*NA b

Give the trace of the CYK parse (the version from the course slides) of w = abc, i.e., a list
of all items that get generated. Explain for each item, by which operation it is obtained and
from which antecedent items.

Solution:

Item Rule
1. [αt, 1>, 0,−,−, 1] lex-scan (a)
2. [βt, 2>, 1,−,−, 2] lex-scan (b)
3. [αs, 2>, 2,−,−, 3] lex-scan (c)
4. [βt, 1>, 0, 0, 0, 0] foot-predict
5. [βt, 1>, 0, 0, 1, 1] foot-predict
6. [βt, 1>, 0, 0, 2, 2] foot-predict
7. [βt, 1>, 0, 0, 3, 3] foot-predict
8. [βt, 1>, 1, 1, 1, 1] foot-predict
9. [βt, 1>, 1, 1, 2, 2] foot-predict
10. [βt, 1>, 1, 1, 3, 3] foot-predict
11. [βt, 1>, 2, 2, 2, 2] foot-predict
12. [βt, 1>, 2, 2, 3, 3] foot-predict
13. [βt, 1>, 3, 3, 3, 3] foot-predict
14. [αt, ε⊥, 0,−,−, 1] move-unary from 1.
15. [βt, ε⊥, 0, 0, 1, 2] move binary from 2. and 5.
16. [βt, ε⊥, 1, 1, 1, 2] move binary from 2. and 8.
17. [βt, ε>, 0, 0, 1, 2] null-adjoin from 15.
18. [βt, ε>, 1, 1, 1, 2] null-adjoin from 16.
19. [αt, ε>, 0,−,−, 2] adjoin 17. in 14.
20. [αs, 1>, 0,−,−, 2] substitute 19.
21. [αs, ε⊥, 0,−,−, 3] move-binary from 20. and 3.
22. [αs, ε>, 0,−,−, 3] null-adjoin from 21. → goal item

2

