Parsing Beyond CFG

Homework 7: LCFRS — Formal Properties
and Normal Forms

Laura Kallmeyer, Tatiana Bladier

Sommersemester 2018

Question 1
Show that the language L is not a 2-MCFL:
L={a"t"a"b"a"b™a"b™a"b"}

Hint: show that this language does not satisfy the pumping lemma for 2-MCFL.

Solution:

According to the pumping lemma for 2-MCFL, there must be at least one word in the language
of the form w;vjwovawsvswaV wW5V5 Where vivovzv Vs # € such that the v; (1 < i < 4) can be
iterated. Each of the vy, ..., v, must necessarily contain either only as or only bs, otherwise
the next iteration step would lead to a word outside the language. However, this means that
by these iterations only some and not all of the exponents n and m can get increased (since
maximally four substrings are iterated but we have five exponents n and five exponents m). lLe.,
after the next iteration we necessarily obtain a word with either two a-sequences of different
length or two b-sequences of different length. This means that the word we obtain by iteration
is not in L. Therefore, L does not satisfy the pumping lemma for 2-MCFL and thus is not a
2-MCFL.

Question 2

Consider the following LCFRS in simple RCG format:

= ({A,B,C,D,S} {a,b,c,d},{W, X, Y, Z}, P,S)
where

P={ YXW) = AW,Y)B(X, 2),
Y

(2

(X)—>(J(XY)
(€,0) —

(

(c,

(

aX, bY) LAY,

€) =
Xe, Yc) — C(X,Y)

d) — }

QUCJ:B:bCOCQ

b

1. Perform the following transformations on this LCFRS in the simple RCG format while
obtaining always weakly equivalent LCFRS:

(a) Transform this grammar G into a weakly equivalent ordered LCFRS.
(b) Remove useless rules.

(c) Remove e-rules.

2. What is the string language generated by this grammar?

Solution:
1. Simplifying the LCFRS G includes the following steps:

(a) The only problematic rule is S(ZY XW) — A(W Y)B(X, Z).

It transforms into S(ZY XW) — A@D(Y, W)B?Y (Z, X) (if the superscript is the identity, we
omit it).

We add B2V (e,c) — ¢, A2V (b,e) = ¢, and AV (bY,aX) — A(X,Y)

Now, there is again a problematic rule AV (bY,aX) — A(X,Y). We transform it into
ACV(bY, aX) — AZD(Y, X)

In the following, for reasons of readability, we replace A?Y and B{*! with new symbols E and
F, respectively.

Resulting grammar after the first step has the following look:
= <{A7 O’ D7 E7 F7 S}? {a7 b’ C7 d}7 {M/? X7 }/7 Z}? P’ S)
where

P={ S(ZYXW)— E(Y,W)F(Z,X),

S(ZY X

S(X)—>C(X,Y)

E(b,€) —

E(bY aX) —>E(Y,X),

F(e, ¢) —

C(Xe, Yc) — C(X,Y)

D(d) — }

(b) We remove the rules S(XY) — C(X,Y), C(Xe,Ye) — C(X,Y), and D(d) — ¢, since we
cannot generate any spans of terminals with these rules.

Resulting grammar after the second step has the following look:

= <{A7 E7 F7 S}? {a7 b7 C? d}7 {I/I/? X7 Y? Z}7 P7 S>
where

P=1 (ZYXW) 5 B(Y,W)F(Z,X),
B(b,e) -
E@Y, aX) L E(Y, X),
F(e,c) —

(c¢) Remove e-rules.

Resulting set of non-terminals N, = {S1, F1° E1 FO1} and the new productions:

P={ SY YXW)— EYY,W)F(X),
SHXW) — EY(W)FY(X),
EY(bY,aX) — EY(Y, X),
EY(by, a) — EY(Y),

ElO()
() — }

2. L={b"ca™ ! |n>1}

