
Parsing Beyond CFG
Homework 7: LCFRS — Formal Properties

and Normal Forms
Laura Kallmeyer, Tatiana Bladier

Sommersemester 2018

Question 1

Show that the language L is not a 2-MCFL:

L = {anbmanbmanbmanbmanbm}

Hint: show that this language does not satisfy the pumping lemma for 2-MCFL.

Solution:

According to the pumping lemma for 2-MCFL, there must be at least one word in the language
of the form w1v1w2v2w3v3w4v4w5v5 where v1v2v3v4v5 6= ε such that the vi (1 ≤ i ≤ 4) can be
iterated. Each of the v1, . . . , v4 must necessarily contain either only as or only bs, otherwise
the next iteration step would lead to a word outside the language. However, this means that
by these iterations only some and not all of the exponents n and m can get increased (since
maximally four substrings are iterated but we have five exponents n and five exponentsm). I.e.,
after the next iteration we necessarily obtain a word with either two a-sequences of different
length or two b-sequences of different length. This means that the word we obtain by iteration
is not in L. Therefore, L does not satisfy the pumping lemma for 2-MCFL and thus is not a
2-MCFL.

Question 2

Consider the following LCFRS in simple RCG format:

G = 〈{A,B,C,D, S}, {a, b, c, d}, {W,X, Y, Z}, P, S〉

where

P = { S(ZY XW )→ A(W,Y )B(X,Z),
S(XY )→ C(X, Y )
A(ε, b)→ ε,
A(aX, bY )→ A(X, Y ),
B(c, ε)→ ε
C(Xc, Y c)→ C(X, Y )
D(d)→ ε }

1. Perform the following transformations on this LCFRS in the simple RCG format while
obtaining always weakly equivalent LCFRS:

(a) Transform this grammar G into a weakly equivalent ordered LCFRS.

(b) Remove useless rules.

(c) Remove ε-rules.

2. What is the string language generated by this grammar?



Solution:

1. Simplifying the LCFRS G includes the following steps:

(a) The only problematic rule is S(ZY XW )→ A(W,Y )B(X,Z).
It transforms into S(ZY XW )→ A〈2,1〉(Y,W )B〈2,1〉(Z,X) (if the superscript is the identity, we
omit it).
We add B〈2,1〉(ε, c)→ ε, A〈2,1〉(b, ε)→ ε, and A〈2,1〉(bY, aX)→ A(X, Y )
Now, there is again a problematic rule A〈2,1〉(bY, aX) → A(X, Y ). We transform it into
A〈2,1〉(bY, aX)→ A〈2,1〉(Y,X)

In the following, for reasons of readability, we replace A〈2,1〉 and B〈2,1〉 with new symbols E and
F , respectively.

Resulting grammar after the first step has the following look:

G = 〈{A,C,D,E, F, S}, {a, b, c, d}, {W,X, Y, Z}, P, S〉

where

P = { S(ZY XW )→ E(Y,W )F (Z,X),
S(XY )→ C(X, Y )
E(b, ε)→ ε,
E(bY, aX)→ E(Y,X),
F (ε, c)→ ε
C(Xc, Y c)→ C(X, Y )
D(d)→ ε }

(b) We remove the rules S(XY ) → C(X, Y ), C(Xc, Y c) → C(X, Y ), and D(d) → ε, since we
cannot generate any spans of terminals with these rules.

Resulting grammar after the second step has the following look:

G = 〈{A,E, F, S}, {a, b, c, d}, {W,X, Y, Z}, P, S〉

where

P = { S(ZY XW )→ E(Y,W )F (Z,X),
E(b, ε)→ ε,
E(bY, aX)→ E(Y,X),
F (ε, c)→ ε

(c) Remove ε-rules.

Resulting set of non-terminals Nε = {S1, E10, E11, F 01} and the new productions:

P = { S1(Y XW )→ E11(Y,W )F 01(X),
S1(XW )→ E10(W )F 01(X),
E11(bY, aX)→ E11(Y,X),
E11(bY, a)→ E10(Y ),
E10(b)→ ε,
F 01(c)→ ε }

2. L = {bncan−1 | n ≥ 1}

2


