Parsing Beyond Context-Free Grammars:

## LCFRS Parsing

Laura Kallmeyer, Patrick Hommers
Sommersemester 2013

| Parsing Beyond CFG | 1 | LCFRS Parsing |
| :--- | :--- | :--- |

## Overview

1. Ranges
2. CYK Parsing
3. Incremental Earley Parsing

## Ranges (1)

- During parsing we have to link the terminals and variables in our LCFRS rules to portions of the input string.
- These can be characterized by their start and end positions.
- A range is an pair of indices $\langle i, j\rangle$ that characterizes the span of a component within the input and a range vector characterizes a tuple in the yield of a non-terminal.
- The range instantiation of a rule specifies the computation of an element from the lefthand side yield from elements of in the yields of the right-hand side non-terminals based on the corresponding range vectors.


## Ranges (2)

Example: Rule $A(a X a, b Y b) \rightarrow B(X) C(Y)$ and input string abababcb.
We assume without loss of generality that our LCFRSs are monotone and $\varepsilon$-free. Furthermore, because of the linearity, the components of a tuple in the yield of an LCFRS non-terminal are necessarily non-overlapping. Then, given this input, we have the following possible instantiations for this rule:

$$
\begin{aligned}
& A\left({ }_{0} a b a_{3},{ }_{3} b a b_{6}\right) \rightarrow B\left({ }_{1} b_{2},{ }_{4} a_{5}\right) \quad A\left({ }_{0} a b a_{3},{ }_{3} b a b c b_{8}\right) \rightarrow B\left({ }_{1} b_{2},{ }_{4} a b c_{7}\right) \\
& A\left({ }_{0} a b a_{3},{ }_{5} b c b_{8}\right) \rightarrow B\left({ }_{1} b_{2},{ }_{6} c_{7}\right) \quad A\left({ }_{0} a b a b a_{5},{ }_{5} b c b_{8}\right) \rightarrow B\left({ }_{1} b a b_{4},{ }_{6} c_{7}\right) \\
& A\left({ }_{2} a b a_{5},{ }_{5} b c b_{8}\right) \rightarrow B\left({ }_{3} b_{4},{ }_{6} c_{7}\right)
\end{aligned}
$$

## Ranges (3)

Definition 1 (Range instantiation, [Boullier, 2000]) Let $G=(N, T, V, P, S)$ be a LCFRS, $w=t_{1} \ldots t_{n} \in T^{n}(n \geq 0)$ and $r=A(\vec{\alpha}) \rightarrow A_{1}\left(\overrightarrow{\alpha_{1}}\right) \cdots A_{m}\left(\overrightarrow{\alpha_{m}}\right) \in P(0 \leq m)$. A range instantiation of $r$ wrt. w is a function $f: V \cup\left\{E p s_{i} \mid \vec{\alpha}(i)=\varepsilon\right\} \cup\left\{t^{\prime} \mid t^{\prime}\right.$ an occurrence of some $t \in T$ in $\vec{\alpha}\} \rightarrow\{\langle i, j\rangle \mid 0 \leq i \leq j \leq n\}$ such that
a) for all occurrences $t^{\prime}$ of a $t \in T$ in $\vec{\alpha}, f\left(t^{\prime}\right)=\langle i-1, i\rangle$ for some $i$ with $t_{i}=t$,
b) for all $x, y$ adjacent in one of the $\vec{\alpha}(i)$ there are $i, j, k$ with $f(x)=\langle i, j\rangle, f(y)=\langle j, k\rangle$; we define then $f(x y)=\langle i, k\rangle$,
c) for all $E p s \in\left\{E p s_{i} \mid \vec{\alpha}(i)=\varepsilon\right\}, f(E p s)=\langle j, j\rangle$ for some $j$; we define then for every $\varepsilon$-argument $\vec{\alpha}(i)$ that $f(\vec{\alpha}(i))=f\left(E p s_{i}\right)$.
$A(f(\vec{\alpha})) \rightarrow A_{1}\left(f\left(\overrightarrow{\alpha_{1}}\right)\right) \cdots A_{m}\left(f\left(\overrightarrow{\alpha_{m}}\right)\right)$ with
$f\left(\left\langle x_{1}, \ldots, x_{k}\right\rangle\right)=\left\langle f\left(x_{1}\right), \ldots, f\left(x_{k}\right)\right\rangle$ is then called an instantiated rule.

| Parsing Beyond CFG | 5 | LCFRS Parsing |
| :--- | :--- | :--- |

## CYK Parsing (1)

First introduced in [Seki et al., 1991]; deduction-based definition in, e.g., [Kallmeyer and Maier, 2010].

Idea: Once all elements in the RHS of a an instantiated rule have been found, complete the LHS.

- We start with the terminal symbols: whenever we can find a range instantiation of a rule with rhs $\varepsilon$, we conclude that this rule can be applied (scan).
- We parse bottom-up: whenever, for am instantiated rule, all elements in the rhs have been found, we conclude that this rule can be applied and the lhs of the instantiated rule is deduced (complete).
- Our input $w$ is in the language iff $S$ with range vector $\langle\langle 0, n\rangle\rangle$ is in the final set of results that we have deduced.


## CYK Parsing (2)

Deduction rules:
Items $[A, \vec{\rho}]$ with $A \in N, \vec{\rho}$ is a $\operatorname{dim}(A)$-dimensional range vector in $w$.

Axioms (scan): $\overline{[A, \vec{\rho}]} A(\vec{\rho}) \rightarrow \varepsilon$ a range instantiated rule

$$
\text { Complete: } \frac{\left[A_{1}, \overrightarrow{\rho_{1}}\right], \ldots,\left[A_{m}, \overrightarrow{\rho_{m}}\right]}{[A, \vec{\rho}]} \quad \begin{aligned}
& A(\vec{\rho}) \rightarrow A_{1}\left(\overrightarrow{\rho_{1}}\right), \ldots, A_{m}\left(\overrightarrow{\rho_{m}}\right) \\
& \text { a range instantiated rule }
\end{aligned}
$$

Goal item: $[S,\langle\langle 0, n\rangle\rangle]$

## Parsing Beyond CFG

7
LCFRS Parsing

Kallmeyer, Hommers

## CYK Parsing (3)

Deduction rules for binarized $\varepsilon$-free grammars where, without loss
of generality, either the lhs contains a single terminal and the rhs is $\varepsilon$ or the rule contains only variables:
Items and goal as before.
Scan: $\overline{[A,\langle\langle i, i+1\rangle\rangle]} A\left(w_{i+1}\right) \rightarrow \varepsilon \in P$
Unary: $\frac{[B, \vec{\rho}]}{[A, \vec{\rho}]} A(\vec{\alpha}) \rightarrow B(\vec{\alpha}) \in P$
Binary: $\frac{\left[B, \overrightarrow{\rho_{B}}\right],\left[C, \overrightarrow{\rho_{C}}\right]}{\left[A, \overrightarrow{\rho_{A}}\right]} \quad \begin{array}{ll}A\left(\overrightarrow{\rho_{A}}\right) \rightarrow B\left(\overrightarrow{\rho_{B}}\right) C\left(\overrightarrow{\rho_{C}}\right) \\ \text { is a range instantiated rule }\end{array}$

## CYK Parsing (4)

Complexity of CYK parsing with binarized LCFRSs:
We have to consider the maximal number of possible applications of the complete rule.
Binary: $\frac{\left[B, \overrightarrow{\rho_{B}}\right],\left[C, \overrightarrow{\rho_{C}}\right]}{\left[A, \overrightarrow{\rho_{A}}\right]} \quad \begin{aligned} & A\left(\overrightarrow{\rho_{A}}\right) \rightarrow B\left(\overrightarrow{\rho_{B}}\right) C\left(\overrightarrow{\rho_{C}}\right) \\ & \text { is a range instantiated rule }\end{aligned}$
If $k$ is the maximal fan-out in the LCFRS, we have maximal $2 k$ range boundaries in each of the antecedent items of this rule. For variables $X_{1}, X_{2}$ being in the same lhs side argument of the rule, $X_{1}$ left of $X_{2}$ and no other variables in between, the right boundary of $X_{1}$ is the left boundary of $X_{2}$. In the worst case, $A, B, C$ all have fan-out $k$ and each lhs argument contains two variables. This gives $3 k$ independent range boundaries and consequently a time complexity of $\mathcal{O}\left(n^{3 k}\right)$ for the entire algorithm.

Parsing Beyond CFG
9
LCFRS Parsing

## Incremental Earley Parsing

Strategy:

- Process LHS arguments incrementally, starting from an $S$-rule
- Whenever we reach a variable, move into rule of correponding rhs non-terminal (predict or resume).
- Whenever we reach the end of an argument, suspend the rule and move into calling parent rule.
- Whenever we reach the end of the last argument convert item into a passive one and complete parent item.

This parser is described in [Kallmeyer and Maier, 2009] and inspired by the Thread Automata in
[Villemonte de La Clergerie, 2002]

## Incremental Earley Parsing: Items

Passive items: $[A, \vec{\rho}]$ where $A$ is a non-terminal of fan-out $k$ and $\vec{\rho}$ is a range vector of fan-out $k$

## Active items:

$$
\left[A(\vec{\phi}) \rightarrow A_{1}\left(\overrightarrow{\phi_{1}}\right) \ldots A_{m}\left(\overrightarrow{\phi_{m}}\right), \operatorname{pos},\langle i, j\rangle, \vec{\rho}\right]
$$

where

- $A(\vec{\phi}) \rightarrow A_{1}\left(\overrightarrow{\phi_{1}}\right) \ldots A_{m}\left(\overrightarrow{\phi_{m}}\right) \in P ;$
- pos $\in\{0, \ldots, n\}:$ We have reached input position pos;
- $\langle i, j\rangle \in \mathbb{N}^{2}$ : We have reached the $j$ th element of $i$ th argument (dot position);
- $\vec{\rho}$ is a range vector containing variable and terminal bindings. All elements are initialized to "?", an initialized vector is called $\vec{\rho}_{\text {init }}$.


## Incremental Earley Parsing: Example (1)

$S\left(X_{1} X_{2}\right) \longrightarrow A\left(X_{1}, X_{2}\right) \quad A\left(a X_{1}, b X_{2}\right) \longrightarrow A\left(X_{1}, X_{2}\right) \quad A(a, b) \longrightarrow \varepsilon$
Parsing trace for input $w=a a b b$ :

|  | pos | item | $\vec{\rho}$ |  |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | $S\left(\bullet X_{1} X_{2}\right) \longrightarrow A\left(X_{1}, X_{2}\right)$ | $(?, ?)$ | axiom |
| 2 | 0 | $A\left(\bullet a X_{1}, b X_{2}\right) \longrightarrow A\left(X_{1}, X_{2}\right)$ | $(?, ?, ?, ?)$ | predict, 1 |
| 3 | 0 | $A(\bullet a, b) \longrightarrow \varepsilon$ | $(?, ?)$ | predict, 1 |
| 4 | 1 | $A\left(a \bullet X_{1}, b X_{2}\right) \longrightarrow A\left(X_{1}, X_{2}\right)$ | $(\langle 0,1\rangle, ?, ?, ?)$ | scan, 2 |
| 5 | 1 | $A(a \bullet, b) \longrightarrow \varepsilon$ | $(\langle 0,1\rangle, ?)$ | scan, 3 |
| 6 | 1 | $A\left(\bullet a X_{1}, b X_{2}\right) \longrightarrow A\left(X_{1}, X_{2}\right)$ | $(?, ?, ?, ?)$ | predict, 4 |
| 7 | 1 | $A(\bullet a, b) \longrightarrow \varepsilon$ | $(?, ?)$ | predict 4 |
| 8 | 1 | $S\left(X_{1} \bullet X_{2}\right) \longrightarrow A\left(X_{1}, X_{2}\right)$ | $(\langle 0,1\rangle, ?)$ | susp. 5, 1 |
| 9 | 1 | $A(a, \bullet b) \longrightarrow \varepsilon$ | $(\langle 0,1\rangle, ?)$ | resume 5, 8 |

## Incremental Earley Parsing: Example (2)

| 10 | 2 | $A\left(a \bullet X_{1}, b X_{2}\right) \longrightarrow A\left(X_{1}, X_{2}\right)$ | $(\langle 1,2\rangle, ?, ?, ?)$ | scan 6 |
| :--- | :--- | :--- | :--- | :--- |
| 11 | 2 | $A(a \bullet, b) \longrightarrow \varepsilon$ | $(\langle 1,2\rangle, ?)$ | scan 7 |
| 12 | 2 | $A\left(\bullet a X_{1}, b X_{2}\right) \longrightarrow A\left(X_{1}, X_{2}\right)$ | $(?, ?, ?, ?)$ | predict 10 |
| 13 | 2 | $A(\bullet a, b) \longrightarrow \varepsilon$ | $(?, ?)$ | predict 10 |
| 14 | 2 | $A\left(a X_{1} \bullet, b X_{2}\right) \longrightarrow A\left(X_{1}, X_{2}\right)$ | $(\langle 0,1\rangle,\langle 1,2\rangle, ?, ?)$ | susp. 11, 4 |
| 15 | 2 | $S\left(X_{1} \bullet X_{2}\right) \longrightarrow A\left(X_{1}, X_{2}\right)$ | $(\langle 0,2\rangle, ?)$ | susp. 14, 1 |
| 16 | 2 | $A\left(a X_{1}, \bullet b X_{2}\right) \longrightarrow A\left(X_{1}, X_{2}\right)$ | $(\langle 0,1\rangle,\langle 1,2\rangle, ?, ?)$ | resume 14, 15 |
| 17 | 3 | $A\left(a X_{1}, b \bullet X_{2}\right) \longrightarrow A\left(X_{1}, X_{2}\right)$ | $(\langle 0,1\rangle,\langle 1,2\rangle,\langle 2,3\rangle, ?)$ | scan 16 |
| 18 | 3 | $A(a, \bullet b) \longrightarrow \varepsilon$ | $(\langle 1,2\rangle, ?)$ | resume 11, 17 |

Incremental Earley Parsing: Example (3)

| 19 | 4 | $A(a, b \bullet) \longrightarrow \varepsilon$ | $(\langle 1,2\rangle,\langle 3,4\rangle)$ | scan 18 |
| ---: | :--- | :--- | :--- | :--- |
| 20 | 4 | $A(\langle 1,2\rangle,\langle 3,4\rangle)$ |  | convert 19 |
| 21 | 4 | $A\left(a X_{1}, b X_{2} \bullet\right) \longrightarrow A\left(X_{1}, X_{2}\right)$ | $(\langle 0,1\rangle,\langle 1,2\rangle,\langle 2,3\rangle,\langle 3,4\rangle)$ | compl. 17, 20 |
| 22 | 4 | $A(\langle 0,2\rangle,\langle 2,4\rangle)$ |  | convert 21 |
| 23 | 4 | $S\left(X_{1} X_{2} \bullet\right) \longrightarrow A\left(X_{1}, X_{2}\right)$ | $(\langle 0,2\rangle,\langle 2,4\rangle)$ | compl. 15, 22 |
| 24 | 4 | $S(\langle 0,4\rangle)$ | convert 23 |  |

## Incremental Earley Parsing: Deduction Rules

- Notation:
- $\vec{\rho}(X)$ : range bound to variable $X$.
$-\vec{\rho}(\langle i, j\rangle)$ : range bound to $j$ th element of $i$ th argument on LHS.
- Applying a range vector $\vec{\rho}$ containing variable bindings for given rule $c$ to the argument vector of the lefthand side of $c$ means mapping the $i$ th element in the arguments to $\vec{\rho}(i)$ and concatenating adjacent ranges. The result is defined iff every argument is thereby mapped to a range.


## Incremental Earley Parsing: Initialize, Goal item

Initialize: $\left.\quad \begin{array}{l}{\left[S(\vec{\phi}) \rightarrow \vec{\Phi}, 0,\langle 1,0\rangle, \vec{\rho}_{\text {init }}\right]} \\ \\ \hline \phi\end{array}\right) \rightarrow \vec{\Phi} \in P$

Goal Item: $[S(\vec{\phi}) \rightarrow \vec{\Phi}, n,\langle 1, j\rangle, \psi]$ with $|\vec{\phi}(1)|=j$ (i.e., dot at the end of lhs argument).

## Incremental Earley Parsing: Scan

If next symbol after dot is next terminal in input, scan it.
Scan: $\frac{[A(\vec{\phi}) \rightarrow \vec{\Phi}, \operatorname{pos},\langle i, j\rangle, \vec{\rho}]}{\left[A(\vec{\phi}) \rightarrow \vec{\Phi}, \operatorname{pos}+1,\langle i, j+1\rangle, \vec{\rho}^{\prime}\right]} \vec{\phi}(i, j+1)=w_{p o s+1}$
where $\vec{\rho}^{\prime}$ is $\vec{\rho}$ updated with $\vec{\rho}(\langle i, j+1\rangle)=\langle$ pos, pos +1$\rangle$.

## Incremental Earley Parsing: Predict

Whenever our dot is left of a variable that is the first argument of some rhs non-terminal $B$, we predict new $B$-rules:

Predict: $\frac{\left[A(\vec{\phi}) \rightarrow \ldots B(X, \ldots) \ldots, \operatorname{pos},\langle i, j\rangle, \vec{\rho}_{A}\right]}{\left[B(\vec{\psi}) \rightarrow \vec{\Psi}, \operatorname{pos},\langle 1,0\rangle, \vec{\rho}_{i n i t}\right]}$
where $\vec{\phi}(i, j+1)=X, B(\vec{\psi}) \rightarrow \vec{\Psi} \in P$

## Incremental Earley Parsing: Suspend

## Suspend

$$
\frac{\left[B(\vec{\psi}) \rightarrow \vec{\Psi}, \operatorname{pos}^{\prime},\langle i, j\rangle, \vec{\rho}_{B}\right],\left[A(\vec{\phi}) \rightarrow \ldots B(\vec{\xi}) \ldots, \operatorname{pos},\langle k, l\rangle, \vec{\rho}_{A}\right]}{\left[A(\vec{\phi}) \rightarrow \ldots B(\vec{\xi}) \ldots, \operatorname{pos}^{\prime},\langle k, l+1\rangle, \vec{\rho}\right]}
$$

where

- the dot in the antecedent $A$-item precedes the variable $\vec{\xi}(i)$
- $|\vec{\psi}(i)|=j$ (ith argument has length $j$, i.e., is completely processed),
- $|\vec{\psi}|<i$ ( $i$ th argument is not the last argument of $B$ ),
- $\vec{\rho}_{B}(\vec{\psi}(i))=\langle$ pos, pos' $\rangle$
- and for all $1 \leq m<i: \vec{\rho}_{B}(\vec{\psi}(m))=\vec{\rho}_{A}(\vec{\xi}(m))$
$\vec{\rho}$ is $\vec{\rho}_{A}$ updated with $\vec{\rho}_{A}(\vec{\xi}(i))=\left\langle p o s\right.$, pos $\left.^{\prime}\right\rangle$.


## Incremental Earley Parsing: Convert

Whenever we arrive at the end of the last argument, we convert the item into a passive one

## Convert:

$$
\frac{\left[B(\vec{\psi}) \rightarrow \vec{\Psi}, \text { pos },\langle i, j\rangle, \vec{\rho}_{B}\right]}{[B, \rho]}|\vec{\psi}(i)|=j,|\vec{\psi}|=i, \vec{\rho}_{B}(\vec{\psi})=\rho
$$

## Incremental Earley Parsing: Complete

Whenever we have a passive $B$ item we can use it to move the dot over the variable of the last argument of $B$ in a parent $A$-rule:
Complete: $\frac{\left[B, \vec{\rho}_{B}\right],\left[A(\vec{\phi}) \rightarrow \ldots B(\vec{\xi}) \ldots, p o s,\langle k, l\rangle, \vec{\rho}_{A}\right]}{\left[A(\vec{\phi}) \rightarrow \ldots B(\vec{\xi}) \ldots, \text { pos }^{\prime},\langle k, l+1\rangle, \vec{\rho}\right]}$ where

- the dot in the antecedent $A$-item precedes the variable $\vec{\xi}\left(\left|\vec{\rho}_{B}\right|\right)$,
- the last range in $\vec{\rho}_{B}$ is $\left\langle p o s, p o s^{\prime}\right\rangle$,
- and for all $1 \leq m<\left|\vec{\rho}_{B}\right|: \vec{\rho}_{B}(m)=\vec{\rho}_{A}(\vec{\xi}(m))$.
$\vec{\rho}$ is $\vec{\rho}_{A}$ updated with $\vec{\rho}_{A}\left(\vec{\xi}\left(\left|\vec{\rho}_{B}\right|\right)\right)=\left\langle\right.$ pos, pos $\left.{ }^{\prime}\right\rangle$.


## Incremental Earley Parsing: Resume

Whenever we are left of a variable that is not the first argument of one of the rhs non-terminals, we resume the rule of the rhs
non-terminal.

$$
\left[A(\vec{\phi}) \rightarrow \ldots B(\vec{\xi}) \ldots, p o s,\langle i, j\rangle, \vec{\rho}_{A}\right]
$$

Resume:

$$
\frac{\left[B(\vec{\psi}) \rightarrow \vec{\Psi}, p o s^{\prime},\langle k-1, l\rangle, \vec{\rho}_{B}\right]}{\left[B(\vec{\psi}) \rightarrow \vec{\Psi}, p o s,\langle k, 0\rangle, \vec{\rho}_{B}\right]}
$$

where

- $\vec{\phi}(i, j+1)=\vec{\xi}(k), k>1$ (the next element is a variable that is the $k$ th element in $\vec{\xi}$, i.e., the $k$ th argument of $B$ ),
- $|\vec{\psi}(k-1)|=l$, and
- $\vec{\rho}_{A}(\vec{\xi}(m))=\vec{\rho}_{B}(\vec{\psi}(m))$ for all $1 \leq m \leq k-1$.


## References

[Boullier, 2000] Boullier, P. (2000). Range Concatenation Grammars. In Proceedings of the Sixth International Workshop on Parsing Technologies (IWPT2000), pages 53-64, Trento, Italy.
[Kallmeyer and Maier, 2009] Kallmeyer, L. and Maier, W. (2009). An incremental Earley parser for simple Range Concatenation Grammar. In Proceedings of IWPT 2009.
[Kallmeyer and Maier, 2010] Kallmeyer, L. and Maier, W. (2010). Data-driven parsing with probabilistic Linear Context-Free Rewriting Systems. In Proceedings of the 23rd International Conference on Computational Linguistics (COLING 2010), Beijing, China.
[Seki et al., 1991] Seki, H., Matsumura, T., Fujii, M., and Kasami, T. (1991). On multiple context-free grammars. Theoretical Computer Science, 88(2):191-229.
[Villemonte de La Clergerie, 2002] Villemonte de La Clergerie, E. (2002). Parsing mildly context-sensitive languages with thread automata. In Proc. of COLING'02.

