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Introduction (1)

• A normal form for a grammar formalism puts additional

constraints on the form of the grammar while keeping the

generative capacity.

• In other words, for every grammar G of a certain formalism,

one can construct a weakly equivalent grammar G′ of the same

formalism that satisfies additional normal form constraints.

• Example: For CFGs we know that we can construct equivalent

ε-free CFGs, equivalent CFGs in Chomsky Normal Form and

equivalent CFGs in Greibach Normal Form.

• Normal Forms are useful since they facilitate proofs of

properties of the grammar formalism.

Parsing Beyond CFG 3 LCFRS Normal Forms

Kallmeyer, Hommers Sommersemester 2013

Useless rules and ε-rules (1)

[Boullier, 1998] shows a range of useful properties of simple

RCG/LCFRS/MCFG that can help to make formal proofs and

parsing easier.

Boullier defines rules that cannot be used in any derivations for

some w ∈ T ∗ as useless.

Proposition 1 For each k-LCFRS (k-simple RCG) G, there exists

an equivalent simple k′-LCFRS (k′-simple RCG) G′ with k′ ≤ k

that does not contain useless rules.

The removal of the useless rules can be done in the same way as in

the CFG case [Hopcroft and Ullman, 1979].
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Useless rules and ε-rules (2)

[Boullier, 1998, Seki et al., 1991] show that the elimination of

ε-rules is possible in a way similar to CFG. We define that a rule is

an ε-rule if one of the arguments of the left-hand side is the empty

string ε.

Definition 1 A simple RCG/LCFRS is ε-free if it either contains

no ε-rules or there is exactly one rule S(ε) → ε and S does not

appear in any of the right-hand sides of the rules in the grammar.

Proposition 2 For every simple k-RCG (k-LCFRS) G there exists

an equivalent ε-free simple k′-RCG (k′-LCFRS) G′ with k′ ≤ k.
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Ordered Simple RCG (1)

In general, in MCFG/LCFRS/simple RCG, when using a rule in a

derivation, the order of the components of its lhs in the input is not

necessarily the order of the components in the rule.

Example:

S(XY ) → A(X, Y ), A(aXb, cY d) → A(Y,X), A(e, f)→ ε.

String language:

{(ac)ne(db)n(ca)nf(bd)n |n ≥ 0}

∪{(ac)nafb(db)n(ca)nced(bd)n |n ≥ 0}
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Ordered Simple RCG (2)

Definition 2 (Ordered simple RCG) A simple RCG is ordered

if for every rule A(~α) → A1( ~α1) . . .Ak( ~αk) and every

Ai( ~αi) = Ai(Y1, . . . , Ydim(Ai)) (1 ≤ i ≤ k), the order of the

components of ~αi in ~α is Y1, . . . , Ydim(Ai).

Proposition 3 For every simple k-RCG G there exists an

equivalent ordered simple k-RCG G′.

[Michaelis, 2001, Kracht, 2003, Kallmeyer, 2010]

In LCFRS terminology, this property is called monotone while in

MCFG terminology, it is called non-permuting.
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Binarization (1)

In LCFRS terminology, the length of the right-hand side of a

production is called its rank. The rank of an LCFRS is given by the

maximal rank of its productions.

Proposition 4 For every simple RCG/LCFRS G there exists an

equivalent simple RCG/LCFRS G′ that is of rank 2.

Unfortunately, the fan-out of G′ might be higher than the fan-out

of G.

The transformation can be performed similarly to the CNF

transformation for CFG

[Hopcroft and Ullman, 1979, Grune and Jacobs, 2008].
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Binarization (2)

Example:

S(XY ZUVW ) → A(X,U)B(Y, V )C(Z,W )

A(aX, aY ) → A(X, Y ) A(a, a) → ε

B(bX, bY ) → B(X, Y ) B(b, b) → ε

C(cX, cY ) → C(X, Y ) C(c, c) → ε

Equivalent binarized grammar:

S(XPUQ) → A(X,U)C1(P,Q) C1(Y Z, VW ) → B(Y, V )C(Z,W )

A(aX, aY ) → A(X, Y ) A(a, a) → ε

B(bX, bY ) → B(X, Y ) B(b, b) → ε

C(cX, cY ) → C(X, Y ) C(c, c) → ε
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Binarization (3)

We define the reduction of a vector ~α1 ∈ [(T ∪ V )∗]k1 by a vector

~x ∈ (V ∗)k2 where all variables in ~x occur in ~α1 as follows:

Take all variables from ~α1 (in their order) that are not in ~x while

starting a new component in the resulting vector whenever an

element is, in ~α1, the first element of a component or preceded by a

variable from ~x or a terminal.

Examples:

1. 〈aX1, X2, bX3〉 reduced with 〈X2〉 yields 〈X1, X3〉.

2. 〈aX1X2bX3〉 reduced with 〈X2〉 yields 〈X1, X3〉 as well.
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Binarization (4)

Transformation into a simple RCG of rank 2:

for all r = A(~α) → A0( ~α0) . . . Am( ~αm) in P with m > 1:

remove r from P and pick new non-terminals C1, . . . , Cm−1

R := ∅

add the rule A(~α) → A0( ~α0)C1( ~γ1) to R where ~γ1

is obtained by reducing ~α with ~α0

for all i, 1 ≤ i ≤ m− 2:

add the rule Ci(~γi) → Ai( ~αi)Ci+1( ~γi+1) to R where ~γi+1

is obtained by reducing ~γi with ~αi

add the rule Cm−1( ~γm−2) → Am−1( ~αm−1)Am( ~αm) to R

for every rule r′ ∈ R

replace rhs arguments of length > 1 with new variables

(in both sides) and add the result to P
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Binarization (5)

In our example, for the rule

S(XY ZUVW ) → A(X,U)B(Y, V )C(Z,W ), we obtain

R = { S(XY ZUVW ) → A(X,U)C1(Y Z, VW ),

C1(Y Z, VW ) → B(Y, V )C(Z,W ) }

Collapsing sequences of adjacent variables in the rhs leads to the

two rules

S(XPUQ) → A(X,U)C1(P,Q), C1(Y Z, VW ) → B(Y, V )C(Z,W )
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