
Parsing
Treebank Grammars

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Winter 2017/18

1 / 26

Table of contents

1 Treebanks

2 Grammar Extraction

3 Markovization

4 Latent categories

5 EM for parameter estimation

2 / 26

Treebanks (1)

Treebanks are corpora (i.e., collections of texts) where each
sentence is annotated with a syntactic structure.
�e syntactic structure can be a constituency structure or a
dependency structure.
Constituency-based data driven parsing is usually done by
learning a grammar (in most cases a PCFG) from a constituency
treebank and using this grammar for parsing.
Dependency-based data driven parsing is usually done by learn-
ing a dependency parser (e.g., a classi�er) from the treebank.

3 / 26

Treebanks (2)

Sample tree from the Penn Treebank (PTB, Marcus et al., 1993):

What

WP

should

MD

I

PRP

do

VB

T

-NONE-

?

.

WHNP NP NP

VP

SBJ

SQ

SBARQ

T

4 / 26

Treebanks (3)

A further example from the Penn Treebank:

Motorola

NNP

either

CC

denied

VBN

RNR

-NONE-

or

CC

would

MD

n't

RB

comment

VB

on

IN

RNR

-NONE-

the

DT

various

JJ

charges

NNS

.

.

NP NP

VP

NP

PP

CLR

VP

VP

NP

VP

VP

SBJ

S

RNR *RNR*

5 / 26

Treebanks (3)

A sample tree from Negra, a German treebank (Skut et al., 1997):

Selbst

ADV

besucht

VVPP

hat

VAFIN

er

PPER

ihn

PPER

nie

ADV

MO HD OA MO

VP

OCHD SB

S

6 / 26

Grammar Extraction (1)

Having a treebank, a simple way to extract a latent PCFG is the
following:

We �rst do some preprocessing (removal of traces, of crossing
branches, ….).
�en, we binarize the trees, i.e., we make sure all rhight-hand
sides have length 2.
For all A→ α ∈ P , the estimated probability p(A→ α) is

p(A→ α) =
count(A→ α)

count(A)

where count(A → α) is the number of occurrences of the
production in the treebank and count(A) the number of A-
nodes in the treebank.

�is is called a Maximum Likelihood Estimator.

7 / 26

Grammar Extraction (2)

Problem with such grammars: Independence assumptions are too
strong.
�erefore, a series of techniques for grammar re�nement have been
proposed:

Lexicalization of PCFGs (Collins, 2003)
Markovization: Instead of using unique new non-terminals
during binarization, we always use the same X , a�aching some
vertical and horizontal context to it (Klein & Manning, 2003)
Category splitting and merging: whenever a single category
A behaves di�erently in di�erent context, we split it into sev-
eral new categories, depending on context. �is can be done
automatically (Petrov et al., 2006)

8 / 26

Markovization (1)

�e Chomsky Normal Form (CNF) binarization introduced earlier in
the course is such that for every rule A0 → A1 . . .An with n > 2,
n− 1 new nonterminals are introduced:

A0 → A1X1,X1 → A2X2, . . . ,Xn−1 → An−1An

Problems:

Too many non-terminals.
Lack of generalization (non-terminals are highly sepcialized).

For this reason, we introducemarkovization (Klein & Manning,
2003).

9 / 26

Markovization (2)

Idea:

Introduce only a single new non-terminal for the new rules
introduced during binarization.
add vertical and horizontal context from the original trees
to each occurrence of this new non-terminal.

As vertical context, we add the �rst v labels on the path from
the root node of the tree that we want to binarize to the root
of the entire treebank tree. �e vertical context is collected
during grammar extraction and then taken into account during
binarization of the rules.
As horizontal context, during binarization of a rule A →
A0 . . .An, for the new non-terminal that comprises the right-
hand side elements Ai . . .An (for some 1 ≤ i ≤ n), we add the
�rst h elements of Ai,Ai−1, . . . ,A0.

10 / 26

Markovization (3)

Example: Consider again the
PTP tree from slide 4:

What

WP

should

MD

I

PRP

do

VB

T

-NONE-

?

.

WHNP NP NP

VP

SBJ

SQ

SBARQ

T

Removal of the trace
leads to

SBARQ

.

?

SQ

VP

VB

do

NP

PRP

I

MD

should

WHNP

WH

What

11 / 26

Markovization (4)

Binarization and Markovization with v = 2 and h = 2 (superscript =
vertical context, subscript = horizontal context of the new
non-terminal X):

SBARQ

XSBARQ
SQ .

.

?

SQ

XSQ SBARQ
NP VP

VP

VB

do

NP

PRP

I

MD

should

WHNP

WH

What

(o�entimes, v = 1 and h = 2 are chosen)
12 / 26

Latent categories (1)

�ere also have been a range of approaches to re�ning treebank
grammars. One of the best performing approaches is the Berkeley
parser Petrov et al. (2006).

Starting point: Penn Treebank trees.

Binarization of these trees: le�-branching binarization with
new intermediate non-terminals A where A is the root of the
tree one wants to binarize.

FRAG

.

.

NP

NN

year

Det

this

RB

Not

; FRAG

.

.

FRAG

NP

NN

year

Det

this

RB

Not

Start with the treebank grammar obtained from these trees.
13 / 26

Latent categories (2)

Iteration for learning new labels and estimating new probabilities:

Given a current PCFG, repeat the following until no more successful
splits can be found:

Split non-terminals:

Split every non-terminal A into 2 new symbols A1,A2(e.g, NP;

NP1, NP2),

replace every rule A→ α with A1 → α and A2 → α, both with
the same probability as the original rule,

and for every occurrence of A in a righthand side of some B →
γ, replace B → γ with two new rules, one with A1 instead of A
and another one with A2, dividing the probability of the original
rule between these two new rules. �is is done repeatedly until
all old non-terminals have been removed.

Furthermore, add some small amount of randomness to the
probabilities to break the symmetry.

14 / 26

Latent categories (3)

�en, probabilities are re-estimating using the inside-outside
EM algorithm (Collins) with the split grammar, based on the
correct treebank bracketing and the coarser node labels in the
treebank.

Each split that has contributed to increasing the probability of
the training data is kept and the other splits are reversed.

Result:

POS tags get split, for instance VBZ is split into 11 di�erent
POS tags.
Phrasal non-terminals get split as well, for example di�erent
VP categories for in�nite VPs, passive VPs, intransitive VPs etc.
�e best evaluation was obtained with a resulting grammar
with 1043 symbols, F1 score of 90.2% on the Penn treebank.

15 / 26

EM Training

Supervised data-driven PCFG parsing: Given a treebank, read o� the
rules and estimate their probabilities based on the counts of the rules.

More challenging: Unsupervised parameter estimation: Given a CFG
and unannotated training data, estimate the probabilities of the rules.

We use the EM algorithm, based on the inside and outside
computations from the previous slides.

16 / 26

EM Training

Underlying ideas, as in the HMM parameter estimation:

We estimate parameters iteratively: we start with some param-
eters and use the estimated probabilities to derive be�er and
be�er parameters.

We use our current parameters to estimate (fractional) counts
of possible parse trees and possible rules. In other words,
the probability mass assigned to the training corpus gets dis-
tributed among the possible parse trees.

�ese fractional counts are then used to compute the parame-
ters of the next model.

17 / 26

EM Training

For each rule r = A→ γ ∈ P , we start with some initial probabilities
p(0)(r) that can be chosen randomly. In each iteration, based on the
probabilities p(i), new probabilities p(i+1) are estimated.

Intuition:

p(i+1)(A→ γ) =
expected count of A→ γ

expected count of non-terminal A
more precisely

p(i+1)(A→ γ) =
f (i)(A→ γ)∑

A→γ′∈P f (i)(A→ γ′)

In the E-step of the algorithm, we compute the fractional counts
f (i)(r) for all r ∈ P and in the M-step, we re-estimate the probabilities
according to these new counts.

18 / 26

EM Training

We can think of this as follows:

Our training data are sentences w(1), . . . ,w(N).

In each iteration, based on the current probabilities, we create a
treebank for training:

For each of the sentences, the treebank contains all possible
parse trees. But tree t does not occur once in the treebank,
instead, it occurs P(t) times.

Consequently, when counting occurrences of rules in the tree-
bank in order to estimate new probabilities, an occurrence of
some rule r in a parse tree t does not add 1 to the count but it
adds P(t).

�e resulting count for rule r , summing up the probabilities of
the parse trees for every occurrence of r , is then the exptected
count of r .

19 / 26

EM Training

Computation of the fractional counts for a single sentence w: We
distribute P(w) among all the rules used in any of the parse trees of w,
in accordance with the probability of these parse trees.

We have

P(w) = αS,1,|w|

and

P(S ∗⇒ w1 . . .wi−1Awj+1 . . .w|w|
⇒ w1 . . .wi−1BCwj+1 . . .w|w|
∗⇒ w1 . . .wk−1Cwj+1 . . .w|w|
∗⇒ w1 . . .w|w|)

= βA,i,jαB,i,k−1αC,k,jp(A→ BC)

20 / 26

EM Training

Computation of Cw(A→ γ) for a sentence w
Let G = 〈N , T , P, S〉 be a PCFG with probabilities p(r) for all rules
r ∈ P and let w ∈ T∗ be an input sentence.

1 Calculate the inside and outside probabilities αA,i,j and βA,i,j for
all A ∈ N and 1 ≤ i < j ≤ |w|.

2 For every rule of the form A→ BC:

Cw(A→ BC) =
∑

1≤i<k≤j≤n

βA,i,jαB,i,k−1αC,k,jp(A→ BC)
αS,1,|w|

3 For every rule of the form A→ a:

Cw(A→ a) =
∑

1≤i≤n,wi=a

βA,i,ip(A→ a)
αS,1,|w| 21 / 26

EM Training

In order to calculate the fractional count f (i)(A→ γ), sum over the
counts Cw(A→ γ) for all sentences in the training corpus:

E-step

Let our training corpus consist of sentences w(1) . . .w(N) and let the
PCFG and its probability function p be as above.

f (A→ γ) =
∑

1≤m≤N
Cw(m)(A→ γ)

�is is the E (expectation) step for our parameters.

22 / 26

EM Training

From these frequencies (= fractional counts) f (A→ γ), we can
estimate new rule probabilities p̂ towards maximizing the observed
data:

M-step
For every A→ γ ∈ P :

p̂(A→ γ) =
f (A→ γ)∑

A→γ′∈P f (A→ γ′)

�is is theM (maximization) step for the rule probabilities.

23 / 26

EM Training

EM algorithm for estimation of p for a PCFG; training corpus is a
sequence of sentences w(1), . . . ,w(N)

initialize p

iterate until convergence:

E-step

for every 1 ≤ m ≤ N : compute Cw(A→ γ) as above

for every r ∈ P : f (A→ γ) =
∑

1≤m≤N Cw(m)(A→ γ)

M-step

for every A→ γ ∈ P : p̂(A→ γ) = f (A→γ)∑
A→γ′∈P f (A→γ′)

return p

24 / 26

Treebank re�nement

So far, we have seen completely unsupervised training. Each
iteration has a complexity of O(|N |3|w|3).

�e complexity decreases considerably if we know the parse
trees of the sentences except for the node labels. I.e., we know
about the bracketing of the trees.

Pereira & Schabes (1992) show how this information can be
integrated into the inside outside computation:

1 Given a sentence w with its bracketing, we de�ne c(i, j) as 1 if a
subtree spanning wi . . .wj exists and otherwise it is 0.

2 For every value αA,i,j and βA,i,j , we multiply with the factor
c(i, j). Consequently all values where there is no corresponding
bracketing are set to 0.

Inside outside computation becomes linear in the size of the
input.

25 / 26

Collins, Michael. �� �e inside-outside algorithm.
www.cs.columbia.edu/∼mcollins/io.pdf.

Collins, Michael. 2003. Head-Driven Statistical Models for Natural Language Parsing.
Computational Linguistics 29(4). 589–637.

Klein, Dan & Christopher D. Manning. 2003. Fast exact inference with a factored
model for Natural Language parsing. In Advances in neural information processing
systems 15 (nips), 3–10. Vancouver, BC: MIT Press.

Marcus, Mitchell P., Beatrice Santorini & Mary Ann Marcinkiewicz. 1993. Building a
large annotated corpus of English: The Penn Treebank. Computational Linguistics
19(2). 313–330. Special Issue on Using Large Corpora: II.

Pereira, Fernando & Yves Schabes. 1992. Inside-outside reestimation from partially
bracketed corpora. In Proceedings of the 30th annual meeting of the association for
computational linguistics, 128–135. Newark, Delaware, USA: Association for
Computational Linguistics. doi:10.3115/981967.981984.
http://www.aclweb.org/anthology/P92-1017.

Petrov, Slav, Leon Barre�, Romain �ibaux & Dan Klein. 2006. Learning Accurate,
Compact, and Interpretable Tree Annotation. In Proceedings of the 21st
international conference on computational linguistics and 44th annual meeting of the
acl, 433–440. Sydney.

Skut, Wojciech, Brigi�e Krenn, �orsten Brants & Hans Uszkoreit. 1997. An
annotation scheme for free word order languages. In Proceedings of the 5th applied
natural language processing conference, 88–95. Washington, DC.

26 / 26

www.cs.columbia.edu/~mcollins/io.pdf
http://www.aclweb.org/anthology/P92-1017

	Treebanks
	Grammar Extraction
	Markovization
	Latent categories
	EM for parameter estimation

