Parsing
Shift Reduce Parsing

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Winter 2016/17
<table>
<thead>
<tr>
<th></th>
<th>Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Shift and reduce</td>
</tr>
<tr>
<td>3</td>
<td>The algorithm</td>
</tr>
<tr>
<td>4</td>
<td>Soundness and completeness</td>
</tr>
<tr>
<td>5</td>
<td>Control structures</td>
</tr>
</tbody>
</table>
CFG parser that is

- a **bottom-up** parser: we start with the terminals and subsequently replace righthand sides of productions with lefthand sides.
- a **directional** parser: the replacing of righthand sides with lefthand sides is ordered corresponding to a rightmost derivation.
- a **LR**-parser: we process the input from left to right while constructing a rightmost derivation.
- a **Shift-reduce**-parser: the two operations of the parser are shift and reduce.
This parser corresponds to the CYK with dotted productions and with more or less an on-line order for filling the chart:

- read input from left to right,
- at every input position i, complete as much as possible

But: instead of a chart, we use a stack that contains the sentential form that we have already found.
Shift and reduce (1)

The parser consists of

- a stack (initially empty) $\Gamma \in (N \cup T)^*$
- the remaining input (initially w).

Idea:

- w is shifted on the stack while, whenever the top of the stack is the rhs of a production in reverse order, this is replaced with the lhs.
- Success if $\Gamma = S$ and remaining input ϵ.
For convenience we write the stack with its top on the right.

Example

\[S \rightarrow ABC, \ A \rightarrow a | Aa, \ B \rightarrow b | Bb, \ C \rightarrow c \]
\[w = aabbbc. \]
(only successful moves of the parser are listed)

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>aabbbc</td>
<td></td>
<td>shift</td>
</tr>
<tr>
<td>a</td>
<td>abbbc</td>
<td>reduce, A → a</td>
</tr>
<tr>
<td>A</td>
<td>abbbc</td>
<td>shift</td>
</tr>
<tr>
<td>Aa</td>
<td>bbbbc</td>
<td>reduce, A → Aa</td>
</tr>
<tr>
<td>Ab</td>
<td>bbc</td>
<td>shift</td>
</tr>
<tr>
<td>AB</td>
<td>bbc</td>
<td>reduce, B → b</td>
</tr>
<tr>
<td>ABb</td>
<td>bc</td>
<td>shift</td>
</tr>
</tbody>
</table>
Shift and reduce (3)

Example continued

\[S \to ABC, A \to a \mid Aa, B \to b \mid Bb, C \to c \]

<table>
<thead>
<tr>
<th>Production</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABb bc</td>
<td></td>
</tr>
<tr>
<td>AB bc</td>
<td>reduce, B \to Bb</td>
</tr>
<tr>
<td>ABb c</td>
<td>shift</td>
</tr>
<tr>
<td>AB c</td>
<td>reduce, B \to Bb</td>
</tr>
<tr>
<td>ABC</td>
<td>shift</td>
</tr>
<tr>
<td>ABC</td>
<td>reduce, C \to c</td>
</tr>
<tr>
<td>S</td>
<td>reduce, S \to ABC</td>
</tr>
</tbody>
</table>

If we apply the productions in reverse order we obtain a rightmost derivation:

\[S \Rightarrow ABC \Rightarrow ABc \Rightarrow ABbc \Rightarrow ABbbc \Rightarrow Abbbc \Rightarrow Aabbbbc \Rightarrow aabbbbc \]
In general, this parsing strategy is non-deterministic. Non-determinism can arise if there are two productions such that the rhs of one of them is a prefix of the rhs of the other, i.e., if there are different productions $A \to \alpha$, $B \to \alpha\beta$ with $\alpha \in (N \cup T)^+\text{ and } \beta \in (N \cup T)^*$.

To see this assume that we have such productions. In a situation $\Gamma = \ldots \alpha$ we might have the possibility to either reduce to $\Gamma = \ldots A$ or continue with a sequence of shift and reduce steps leading to $\Gamma = \ldots \alpha\beta$ and then reducing to $\Gamma = \ldots B$.

If parsing is deterministic, we always try reduce first. Only if it is not possible, we perform a shift.
In the non-deterministic case, problems can be caused by

- ϵ-productions and
- loops $A \darrow A$.

Both can lead to infinite loops of the parser.
The algorithm (1)

Assume a grammar without ϵ-productions and without loops.

```
function bottom-up(w, $\Gamma$):
    if $w = \epsilon$ and $\Gamma = S$ then true
    else reduce(w, $\Gamma$) or shift(w, $\Gamma$)

function shift(w, $\Gamma$):
    if $w = \epsilon$ then false
    else if $w = aw'$, $a \in T$
        then bottom-up(w', $\Gamma a$)
```
function reduce(w, Γ):
 out := false;
 for every $A \rightarrow \alpha \in P$:
 if $\Gamma = \Gamma'\alpha$ and bottom-up($w, \Gamma'A$)
 then out := true;
 return out

Initial call: bottom-up(w, ϵ)
The algorithm (3)

Shift reduce parsing schema

Parsing schema for shift-reduce parsing:
Item form \([\Gamma, i] \) (\(w\) has been shifted up to position \(i\)).

Axiom:
\[
[\epsilon, 0]
\]

Reduce:
\[
\frac{[\Gamma\alpha, i]}{[\Gamma A, i]} \quad A \rightarrow \alpha \in P
\]

Shift:
\[
\frac{[\Gamma, i]}{[\Gamma a, i + 1]} \quad w_{i+1} = a
\]

Goal item \([S, n]\).
The algorithm (4)

Shift-reduce parsing is exactly what is done by the following PDA constructed from a CFG:

- start with stack Z_0 and q_0;
- $\langle q_0, aZ \rangle \in \delta(q_0, a, Z)$ for all $a \in T$, $Z \in N \cup T \cup \{Z_0\}$ (shift);
- $\langle q_0, A \rangle \in \delta(q_0, \epsilon, \alpha^R)$ for all $A \rightarrow \alpha$ (reduce);
- $\langle q_1, \epsilon \rangle \in \delta(q_0, \epsilon, S)$;
- $\langle q_f, \epsilon \rangle \in \delta(q_1, \epsilon, Z_0)$.

(LR PDA construction in JFLAP for a given CFG)
The algorithm (5)

In the non-deterministic case, the number of items can be quite large.
Example: $S \rightarrow aB \mid bA, A \rightarrow a \mid aS \mid bAA, B \rightarrow b \mid bS \mid aBB$
w = ab yields 8 items:
1. $[\epsilon, 0]$ axiom
2. $[a, 1]$ shift
4. $[ab, 2]$ shift from 2.
5. $[Ab, 2]$ shift from 3.
6. $[aB, 2]$ reduce from 4.
7. $[AB, 2]$ reduce from 5.
8. $[S, 2]$ reduce from 6.
w = $abba$ yields 49 items! (At some point, 11 possibilities are pursued in parallel.)
Soundness and completeness

To prove that our algorithm is correct (sound and complete), we have to show that $[\Gamma, i]$ iff $\Gamma \Rightarrow_* w_1 \ldots w_i$.

We split this into two parts:

1. **Soundness:**

 If $[\Gamma, i]$ then $\Gamma \Rightarrow_* w_1 \ldots w_i$.

 (Can be shown with an induction over the deduction rules.)

2. **Completeness:**

 If $\Gamma \Rightarrow^l w_1 \ldots w_i$ then $[\Gamma, i]$.

 (Can be shown with an induction over l assuming a rightmost derivation.)
As in the LL-parsing (top-down) case, there are two possibilities:

- either proceed **depth-first** (try one reduce, pursue as far as possible, backtrack if parsing not successful),
- or proceed **breadth-first** (try all possible reduce and shift operations in parallel).
Advantages and disadvantages are similar as in the top-down case.

Breadth-first:

- Needs a lot of memory.
- Better for on-line parsing. (At every moment, all analyses for the input that has been seen so far have been computed.)

Depth-first (backtracking):

- Does not need much memory.
- Preferable in a probabilistic setting when we search only for the best solution.
Important features of directional bottom-up parsing:

- **LR-parsing**: input processed from left to right, constructs a rightmost derivation;
- parsing steps *shift* and *reduce*;
- non-deterministic in general;
- different control structures (breadth-first, depth-first);
- does not work for grammars with loops or ϵ-productions;
- no chart parser.