
Parsing
Mid term exam, 06.12.2016

Laura Kallmeyer

Winter 2016, Heinrich-Heine-Universität Düsseldorf

Klausurdauer: 90 Minuten.

Hilfmittel: Sämtliche Unterrichtsmaterialien und Notizen in nicht-elektronischer Form.

Questions can be answered in English or in German.

Exercises marked “BA” are only for BA students (APs or BNs), exercises marked “MA” only for MA
students. All other exercises are for both.

Question 1 (BA CFG, 10 pts)

1. Give a CFG that generates the language {ancmbn |n > 0,m ≥ 0}.

2. Consider the CFG G with non-terminals N = {S, T}, terminals T = {a, b}, start symbol S and
productions S → abS |T, T → Tb | a | b.

(a) Does ε ∈ L(G) hold?

(b) Give the two parse trees for ababb that one obtains with G.

(c) What is the language L(G) generated by this grammar?

Solution:

1. S → aSb | aTb, T → cT | ε 3 pts

2. (a) ε 6∈ L(G). 1 pt

(b) S

S

S

T

b

ba

ba

S

S

T

bT

bT

a

ba

2 pts

(c) The language can be characterized by a regular expression: (ab)∗(a|b)b∗ 4 pts

Question 1 (MA CFG, 10 pts)

1. Give a CFG that generates the language {anbm |n ≥ m ≥ 1}.

2. Consider the CFG G with non-terminals N = {S}, terminals T = {a, b}, start symbol S and
productions S → aSb | aSbb | ε.

(a) Does ε ∈ L(G) hold?

(b) Give the two parse trees for aabbb that one obtains with G.

(c) What is the language L(G) generated by this grammar?

Solution:

1. S → ab | aS | aSb 3 pts

2. (a) ε ∈ L(G). 1 pt

(b) S

bbS

bS

ε

a

a

S

bS

bbS

ε

a

a

2 pts

(c) {anbm | 2n ≥ m ≥ n ≥ 0} 4 pts

Question 2 (PDA, 6 pts)

Consider the following PDA M :

M = 〈{q0, q1}, {a, c}, {#, A}, δ, q0,#, ∅〉 with

δ(q0, a,#) = {〈q0, AA〉} δ(q0, a, A) = {〈q0, AAA〉}
δ(q0, c, A) = {〈q1, A〉} δ(q1, a, A) = {〈q1, ε〉}

The acceptance is with empty stack, i.e., we consider N(M).

1. Give all configurations (triple of state, stack and remaining input) that the automaton goes through
when processing the input aacaaaa.

2. What is the language accepted with empty stack, i.e., what is N(M)?

Solution:

1.

state stack rem. input
q0 # aacaaaa
q0 AA acaaaa
q0 AAAA caaaa
q1 AAAA aaaa
q1 AAA aaa
q1 AA aa
q1 A a
q1 ε ε

(3 pts)

2. {anca2n |n ≥ 1} (3 pts)

Question 3 (Unger with deduction rules (7 pts)) Consider the version of the Unger parsing for
CNF, formulated with deduction rules:

Axiom:
[•S, 0, n] |w| = n

Predict:
[•A, i, k]

[•B, i, j], [•C, j, k] A→ BC ∈ P, i < j < k

2

Scan:
[•A, i, i+ 1]
[A•, i, i+ 1]

A→ wi+1 ∈ P

Complete:
[•A, i, k], [B•, i, j], [C•, j, k]

[A•, i, k] A→ BC ∈ P

Furthermore, take the CFG G with N = {S,A}, T = {a, b, c}, start symbol S and productions

S → SS |SA | a,A→ b | c

Consider an agenda-based chart parsing of the input word aac, using the CNF Unger chart parser. Give
the items that are generated in a table, showing each time the new agenda and the new items generated
from the item that has just been removed from the agenda (possibly in combination with other chart items).

In other words, from one line to the next 1. remove the first item from the agenda and 2. compute all
new items that you can generate from this item and other chart items. These new items are listed in the
left column and are appended to the agenda.

new chart items agenda items
[•S, 0, 3] [•S, 0, 3]
[•S, 0, 1] [•S, 0, 2] [•S, 1, 3] [•S, 2, 3] [•A, 1, 3]
[•A, 2, 3]

[•S, 0, 1] [•S, 0, 2] [•S, 1, 3] [•S, 2, 3] [•A, 1, 3]
[•A, 2, 3]

[S•, 0, 1] [•S, 0, 2] [•S, 1, 3] [•S, 2, 3] [•A, 1, 3] [•A, 2, 3]
[S•, 0, 1]

.

Solution:

new chart items agenda items
[•S, 0, 3] [•S, 0, 3]
[•S, 0, 1] [•S, 0, 2] [•S, 1, 3] [•S, 2, 3] [•A, 1, 3]
[•A, 2, 3]

[•S, 0, 1] [•S, 0, 2] [•S, 1, 3] [•S, 2, 3] [•A, 1, 3]
[•A, 2, 3]

[S•, 0, 1] [•S, 0, 2] [•S, 1, 3] [•S, 2, 3] [•A, 1, 3] [•A, 2, 3]
[S•, 0, 1]

[•S, 1, 2] [•A, 1, 2] [•S, 1, 3] [•S, 2, 3] [•A, 1, 3] [•A, 2, 3] [S•, 0, 1]
[•S, 1, 2] [•A, 1, 2]

– [•S, 2, 3] [•A, 1, 3] [•A, 2, 3] [S•, 0, 1] [•S, 1, 2]
[•A, 1, 2]

– [•A, 1, 3] [•A, 2, 3] [S•, 0, 1] [•S, 1, 2] [•A, 1, 2]
– [•A, 2, 3] [S•, 0, 1] [•S, 1, 2] [•A, 1, 2]
[A•, 2, 3] [S•, 0, 1] [•S, 1, 2] [•A, 1, 2] [A•, 2, 3]
– [•S, 1, 2] [•A, 1, 2] [A•, 2, 3]
[S•, 1, 2] [•A, 1, 2] [A•, 2, 3] [S•, 1, 2]
– [A•, 2, 3] [S•, 1, 2]
[S•, 1, 3] [S•, 1, 2] [S•, 1, 3]
[S•, 0, 2] [S•, 1, 3] [S•, 0, 2]
[S•, 0, 3] [S•, 0, 2] [S•, 0, 3]
– [S•, 0, 3]
– –

(7 points)

Question 4 (Top-Down parsing (6 pts)) Consider the CFG G with N = {S,A}, T = {a, c}, start
symbol S and productions

S → SS |SA | a,A→ c

and the input w = ac.

1. What is the leftmost derivation for ac given this grammar?

3

2. Give all pairs of prediction stack and remaining input that arise in a top-down parsing for this
input. List them in a table with a unique number for each pair and indicate from which other pair
and with which operation (in particular with which predicted production) a new pair was obtained.

Assume that we do not generate pairs where the stack is longer than the remaining input.

id stack rem. input operation
1. S ac axiom
2. SS ac predict from 1. with S → SS
3.

Solution:

1. S ⇒ SA⇒ aA⇒ ac 1 pt

2.

id stack rem. input operation
1. S ac axiom
2. SS ac predict from 1. with S → SS
3. SA ac predict from 1. with S → SA
4. a ac predict from 1. with S → a
5. aS ac predict from 2. with S → a
6. aA ac predict from 3. with S → a
7. ε c scan from 4.
8. S c scan from 5.
9. A c scan from 6.
10. a c predict from 8. with S → a
11. c c predict from 9. with A→ c
12. ε ε scan from 11.

5 pts

Question 5 (Shift-reduce parsing (4 pts)) Consider again the grammar and input from the preced-
ing question.

1. What is the rightmost derivation for ac given this grammar?

2. Give all pairs of stack and remaining input that arise in a shift-reduce parsing for this input. List
them in a table with a unique number for each pair and indicate from which other pair and with
which operation (in particular with which reduce production) a new pair was obtained.

Assume that whenever we have a terminal on top of the stack, we perform only a reduce operation
(since terminals appear only in righthand sides of length 1).

id stack rem. input operation
1. ε ac axiom
2. a c shift from 1.
3. S c reduce from 2. with S → a

.

Solution:

1. S ⇒ SA⇒ Sc⇒ ac 1 pt

2.

id stack rem. input operation
1. ε ac axiom
2. a c shift from 1.
3. S c reduce from 2. with S → a
4. Sc ε shift from 3.
5. SA ε reduce from 4. with A→ c
6. S ε reduce from 5. with S → SA

3 pts

4

Question 6 (CYK-Parsing (7 pts)) Consider again the CFG from above with productions S →
SS |SA | a,A→ c.

Use the CYK parser for CFGs in Chomsky normal form. Use the version that writes entire productions
into the chart, annotated with indices.

How does the chart look like that we obtain for an input w = aacac?

Solution:

Chart:

l
5 S → S1,1S2,4, S → S1,3S4,2, S → S1,4A5,1

4 S → S1,1S2,3, S → S1,3S4,1 S → S2,2S4,2, S → S2,3A5,1

3 S → S1,1S2,2, S → S1,2A3,1 S → S2,2S4,1

2 S → S1,1S2,1 S → S2,1A3,1 S → S4,1A5,1

1 S → a S → a A→ c S → a A→ c
1 2 3 4 5 i

7 pts

Question 7 (BA LL(1) (10 pts))

1. Assume that we want to do LL(1) parsing, using the precompiled First and Follow sets for a given
grammar.

Explain in your own words how these sets constrain the possible predicts that we can make in a
situation where our top-most stack symbol is a non-terminal and we use the next input symbol as
lookahead.

2. Consider the CFG G with N = {S,X}, T = {a, b, d}, start symbol S and productions

S → Xb,X → aXd | ε

(a) Compute First(Xb).

(b) Compute Follow(X).

(c) Is this grammar LL(1)?

Hint: you only have to check whether for the non-terminal X, LL(1) allows to decide deter-
ministically which of the two X-productions to predict.

Solution:

1. For a non-terminal A on the stack, we predict a production A → α from the grammar only if one
of the following two cases holds:

(a) Either the next input symbol is in the First set of α

(b) or ε is in the First set of α and the next input symbol is in the Follow set of α.

4 points

2. (a) First(Xb) = {a, b}. 1 pt

(b) Follow(X) = {b, d}. 2 pt1

(c) The grammar is LL(1) since First(aXd) = {a} and Follow(X) = {b, d} are disjoint.

3 pts

Question 7 (MA LL(1) (10 pts))

5

1. Assume that we want to do LL(1) parsing, using the precompiled First and Follow sets for a given
grammar.

The orginal top-down predict deduction rule is

Predict:
[Aα, i]
[γα, i]

A→ γ ∈ P

Give the modified predict deduction rule that restricts possible predicts by taking the next input
symbol into consideration the way it is done in LL(1) parsing.

2. Consider the CFG G with N = {S,X}, T = {a, b, d}, start symbol S and productions

S → Xb | dX,X → aXd | ε

(a) Compute First(Xb).

(b) Compute Follow(X).

(c) Is this grammar LL(1)?

Solution:

1. Predict:
[Aα, i]
[γα, i]

A→ γ ∈ P,wi+1 ∈ First(α) or ε ∈ First(α) and wi+1 ∈ Follow(α)

4 points

2. (a) First(Xb) = {a, b}. 1 pt

(b) Follow(X) = {b, d, $}. 2 pts

(c) The grammar is LL(1) since

• First(Xb) = {a, b} and First(dX) = {d} are disjoint, and

• First(aXd) = {a} and Follow(X) = {b, d, $} are disjoint.

3 pts

6

