
Parsing
LR Parsing

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Winter 2017/18

1 / 26

Table of contents

1 Introduction

2 �e idea

3 �e parse table

4 �e parser

5 LR(k)-grammars

6 Conclusion

2 / 26

Introduction

Problem of pure bo�om-up parsing: we reduce categories that
cannot be reached from the start symbol.
LR parsing: top-down restricted shi�-reduce parsing.
In contrast to Earley, the top-down predictions are compiled
into the states of an automaton.
Depending on how deterministic the parser is (how many
lookaheads are needed), we distinguish LR(0), LR(1), . . . gram-
mars.

3 / 26

�e idea (1)

Shi�-reduce parsing
NP→ Det N, NP→ John, Det→ the, N→ apple, start symbol NP

Γ remaining input action
the apple

the apple shi�
Det apple reduce
Det apple shi�
Det N reduce
NP reduce

�is grammar is LR(0) since, by looking only at Γ, we can decide
which action to perform.

4 / 26

�e idea (2)

Idea of LR Parsing: Shi� Reduce Parser guided by precompiled
predictions.

Observation: In an Earley Parser,

�e Predict operation is independent from the actual input. It
therefore can be precompiled.
�e Scan and the Complete operations depend on the input. We
can precompile them with respect to the next terminal or the
next category.

In an LR Parser, all do�ed productions we can reach by predicting are
precompiled into a single state. We change from one state to another
by performing a Scan or a Complete, i.e., by moving the dot over a
terminal or a non-terminal.

5 / 26

�e idea (3)

Idea of the LR automaton:

States are sets of do�ed productions with, eventually, the k
input symbols that may follow the production as lookaheads.
States are transitive closures of the predict operation on do�ed
productions: if A→ α • Bβ ∈ q, then B→ •γ ∈ q for all B→ γ,
�e construction of the states starts with a new production
S′ → •S.
We obtain new states by moving the dot over an X ∈ N ∪ T .

6 / 26

�e idea (4)

S′ → •NP
NP → •Det N
NP → •John
Det → •the

q0
NP → John• q1

Det → the•q2
NP → Det • N
N → •apple

q3

N → apple•

q4

NP → Det N •
q5

S′ → NP• q6NP

John

Det
the apple

N

7 / 26

�e idea (4)

At every moment, the parser is in one of the states.

We can shi� an a ∈ T if there is an outgoing a-transition. �e
state changes according to the transition.

We can reduce if the state contains a completed A → α•. We
then reduce with A → α. �e new state is obtained by fol-
lowing the A-transition, starting from the state reached before
processing that rule.

�e stack Γ now contains additional states: Γ ∈ (Q(N ∪ T))∗Q.

8 / 26

�e idea (5)

S′ → •NP
NP → •Det N
NP → •John
Det → •the

q0
NP → John• q1

Det → the•q2
NP → Det • N
N → •apple

q3

N → apple•

q4

NP → Det N •
q5

S′ → NP• q6NP

John

Det
the

apple

N

Γ remaining input action
q0 the apple $
q0 the q2 apple $ shi�
q0 Det q3 apple $ reduce
q0 Det q3 apple q4 $ shi�
q0 Det q3 N q5 $ reduce
q0 NP q6 $ reduce

9 / 26

�e parse table (1)

�e information encoded in the automaton is stored in a parse table,
�e parse table has two parts:

the action table that tells us, depending on state and next input
symbol, whether a) to shi� and, if so, how to change state or b)
to reduce and, if so, which production to use or c) to accept.
the goto table that lists the A-transitions, A ∈ N .

10 / 26

�e parse table (2)

S′ → •NP
NP → •Det N
NP → •John
Det → •the

q0
NP → John• q1

Det → the•q2
NP → Det • N
N → •apple

q3
N → apple•

q4

NP → Det N •
q5

S′ → NP• q6NP

John

Det
the

apple

N

action goto
the apple John NP Det N

0 s2 s1 6 3
1 r2
2 r3
3 s4 5
4 r4
5 r1
6 acc

1. NP→ Det N
2. NP→ John
3. Det→ the
4. N→ apple

11 / 26

�e parse table (3)

If a grammar does not allow for deterministic LR(0) parsing,
we can instead construct an LR(k) parse table (with k looka-
head symbols).
Usually, k = 1 is used. Even if this is not deterministic, we can
do the construction while ending up with a table with more
than one entry in some of the �elds (in case of shi�/reduce or
reduce/reduce con�icts).
Idea of the lookahead: �e lookahead of a do�ed production is
the next terminal that might follow that production.
�e lookahead of S′ → •S is $. Whenever predicting new items,
their lookaheads are computed using the First sets.

12 / 26

�e parse table (4)

Constructing a state (transitive closure of predict operation) with 1
lookahead:

closure(q)
do until q does not change any more:

for every 〈A→ α • Bβ, a〉 ∈ q,
every B→ γ and every b ∈ First(βa):

add 〈B→ •γ, b〉 to q

�e state one can reach from q by moving the dot over X ∈ N ∪ T :

goto-state(q,X)
return closure({〈A→ αX • β, a〉 | 〈A→ α • Xβ, a〉 ∈ q})

13 / 26

�e parse table (5)

Construction of the set of states:

compute-states()
Q = {closure({〈S′ → •S, $〉})}
do until Q does not change any more:

for every X ∈ N ∪ T and every q ∈ Q:
Q = Q∪ {goto-state(q, X)}

Now we can construct the table.

We assume the states to be numbered, q0 =closure(S′ → •S,
$). Furthermore, we assume the productions to be numbered.

14 / 26

�e parse table (6)

Canonical LR(1) construction of the parse tables action and goto, both
initialized with ∅ in all �elds:

for every qi ∈ Q, i ∈ [0..|Q| − 1]:
for every a ∈ T and every qj ∈ Q such that

qj = goto-state(qi, a): add sj to action(i, a)
if 〈A→ α•, a〉 ∈ qi and

j number of A→ α, then add rj to action(i, a)
if 〈S′ → S•, $〉 ∈ qi, then add acc to action(i,$)

for every qi ∈ Q, i ∈ [0..|Q| − 1]:
for every A ∈ N and every qj ∈ Q such that

qj = goto-state(qi,A): add j to goto(i,A)

15 / 26

�e parse table (7)

Example
1. S→ a 2. S→ a S
q0 = closure({〈S’→ • S, $〉}) =

S’→ • S, $ S→ • a, $ S→ • a S, $
q1 = goto-state(q0, S) =

S’→ S •, $
q2 = goto-state(q0, a) =

S→ a •, $ S→ a • S, $ S→ • a, $ S→ • a S, $
q3 = goto-state(q2, S) =

S→ a S •, $
goto-state(q1, a) = ∅, goto-state(q1, S) = ∅, goto-
state(q2, a) = q2, goto-state(q3, a) = ∅, goto-state(q3,
S) = ∅.

16 / 26

�e parse table (8)

Example continued
Constructing the table:
state action goto

a $ S
0 s2 1
1 acc
2 s2 r1 3
3 r2

17 / 26

�e parser

�e parse table determines the possible reductions and shi�s
we can do at every moment.

We start with Γ = q0. In a shi�, we push the new terminal
followed by the state indicated in the action-table on Γ.

In a reduction, we use the production indicated in the action
table. We pop its rhs (in reverse order) and push its lhs. �e
new state is the goto-value of 1. the state preceding the rhs of
this production in Γ and 2. the lhs category of the production.

In addition, we can push the number of the rules in reduction
steps on a stack ∆rm that gives us then the steps of the corre-
sponding rightmost derivation.

18 / 26

LR(k)-grammars (1)

�estion: How can we characterize the type of CFGs that allow for
deterministic LR(k)-parsing?

Deterministic means no shi�-reduce or reduce-reduce con�icts.

To avoid these, we must make sure that for every possible Γ,
there is at most one reduce and, if so, then no shi� can lead to a
successful parse.

19 / 26

LR(k)-grammars (2)

We use the notion of the le� context of a non-terminal and of a
production to de�ne LR(0)-grammars:

LR(0)
1 For each X ∈ (N ∪ T)∗, the le� context of X is Cl(X) :=

{γ | S ∗⇒rm γXα with γ, α ∈ (N ∪ T)∗}.
(⇒rm = rightmost derivation)

2 For every A → α ∈ P , the le� context of A → α is Cl(A →
α) := {γα | γ ∈ Cl(A)}.

3 G is a LR(0) grammar i� for all pairwise di�erent A →
α,A′ → α′ ∈ P : no γ ∈ Cl(A → α) is a pre�xe of a
γ′ ∈ Cl(A′ → α′).

20 / 26

LR(k)-grammars (3)

Example: LR(0)
NP→ Det N, NP→ John, Det→ the, N→ apple, start symbol NP

Cl(N) = {Det}, Cl(Det) = {ε}, Cl(NP) = {ε}.

Cl(NP → Det N) = {Det N}, Cl(NP → N) = {N},
Cl(Det → the) = {the}, Cl(N → apple) = {Det apple},
Cl(NP → John) = {John}.

�e grammar is LR(0).

21 / 26

LR(k)-grammars (4)

In an LR(k)-grammar, in addition, we consider the �rst k symbols
following the rhs of the productions we compare:

LR(k)
A CFG G is LR(k) (k ≥ 0) i� for every pair of right-most derivations
S ∗⇒rm αAw ⇒rm αβw and
S ∗⇒rm γBx ⇒rm αβy

with w, x, y ∈ T∗, A,B ∈ N :

If initk(w) = initk(y), then αAy = γBx, i.e. α = γ,A = B, x = y.
(initk = �rst k symbols)

22 / 26

LR(k)-grammars (5)

�ere are CFGs G such that there is no k ≥ 0 with G being LR(k).

Example
S→ A X, S→ Y C, X→ B C, Y→ A B,
A→ a A, A→ a, B→ b B, B→ b, C→ c C, C→ c

For all k ≥ 0, this grammar is not LR(k) since there are always
right-most derivations
S⇒ Y C k⇒ Y ck ⇒ A B ck

and
S⇒ A X⇒ A B C k−1⇒ A B C ck−1⇒ A B ck

23 / 26

LR(k)-grammars (6)

�e following holds:

Every LR(k)-grammar (k ≥ 0) can be transformed into an
equivalent LR(0)-grammar.

�ere are CFLs that cannot be generated by any LR(0)-
grammar.

�e class of languages generated by LR(0)-grammars is the
class of deterministic CFLs, i.e., the class of languages recog-
nized by deterministic PDAs.

24 / 26

Compact representations of the parse table

Deterministic LR-parsing is linear in the length of the input string.
However, the construction of the parse table is quite expensive in
time and space since the parse tables can get very large.

Compact representations of the parse table that preserve most of the
look-ahead power:

Look Ahead LR (LALR) automata. Idea: collapse states that dis-
tinguish one from the other only concerning their lookaheads.
Replace lookahead information of a do�ed production with sets
containing all lookaheads for this item.
Simple LR (SLR) automata. Idea: Instead of computing the
lookahead sets based on the actual predictions, take the Follow
set of the lhs of the do�ed production as lookahead set.

25 / 26

Conclusion

Bo�om-up (shi�-reduce) parsing with top-down restriction.
Parsing is determined by a precomputed parse table.
Can be done with di�erent numbers of lookaheads.
Deterministic for certain grammars but not for all CFGs.
Problem: parse tables can get quite large.

26 / 26

	Introduction
	The idea
	The parse table
	The parser
	LR(k)-grammars
	Conclusion

