
Parsing
Exercises

Laura Kallmeyer

WS 2017/2018, Heinrich-Heine-Universität Düsseldorf

Question 1 (Grammars)

Consider the following three languages:

• L1 = {anbmcdmen |n,m ≥ 0}

• L2 = {(ab)ncdm |n,m ≥ 0}

• L3 = {anb(cd)nen |n ≥ 0}

One of the languages is regular, one context-free and not regular and one not context-free. Which are
the regular and the non-regular context-free languages? Justify your answer by giving the corresponding
grammars.

Solution:

L2 is regular: S → abS, S → c, S → cB,B → d,B → dB.

L1 is context-free: S → aSe, S → T, T → bTd, T → c.

L3 is context-sensitive:

S → GbH, S → b,

G→ GA, Aa→ aA, Ab→ abC,

Ccd→ cdC, C → cdE, Ee→ eE, EH → eH

G→ A′, A′a→ aA′, A′b→ abC ′,

C ′cd→ cdC ′, C ′e→ cde, C ′H → cde, H → e

(this grammar was not required)

Question 2 (CFG)

1. Consider the CFG G1 with non-terminals {S, T,A,B}, terminals {a, b}, start symbol S and pro-
ductions

S → ATA S → BTB
T → ATA T → BTB T → ε
A→ a B → b

(a) Transform G1 into an equivalent CFG G′1 without ε-productions.

(b) Transform G′1 into an equivalent CFG G′′1 in Chomsky Normal Form.

2. Consider the CFG G2 with non-terminals {S,A,B}, terminals {a, b}, start symbol S and produc-
tions

S → AB A→ S A→ a B → b

Transform G2 into an equivalent CFG G′2 without left recursion.

Solution:

1. (a) First, calculate the set Nε of all A ∈ N such that A
∗⇒ ε: Nε = {T}

Consequently, the productions in G′1 are

S → ATA S → BTB S → AA S → BB
T → ATA T → BTB T → AA T → BB
A→ a B → b

(b) For the transformation into CNF, we introduce new non-terminals C1, C2. The new set of
productions in G′′1 is

S → AC1 S → BC2 S → AA S → BB
T → AC1 T → BC2 T → AA T → BB
C1 → TA C2 → TB A→ a B → b

2. We put indices on our non-terminals: B has index 1, A index 2 and S index 3:

S3 → A2B1 A2 → S3 A2 → a B1 → b

Obviously, this grammar is left-recursive: S3 ⇒ A2B1 ⇒ S3B1

For the indices 1 and 2 the condition that every rhs starts either with a terminal or with a non-
terminal of higher index is satisfied.

Consider S3: in order to remove the problematic production S3 → A2B1, we replace A2 with the
rhs of A2-productions. Our new productions are

S3 → S3B1 S3 → aB1 A2 → S3 A2 → a B1 → b

Now we have one left-recursive productions, S3 → S3B1, that still needs to be removed:

We introduce a new non-terminal C and replace S3 → S3B1, S3 → aB1

with S3 → aB1, S3 → aB1C, C → B1C, C → B1.

As a result, we obtain the following productions:

S3 → aB1 S3 → aB1C C → B1C C → B1 A2 → S3 A2 → a B1 → b

Note that by this transformation, the non-terminal A2 became useless since it is no longer reachable
from the start symbol. Furthermore, we have unary productions.

If we remove the productions with the useless symbol A2 and if we eliminate the unary productions,
we obtain the productions

S3 → aB1 S3 → aB1C C → B1C C → b B1 → b

We could also start with different indices, e.g.,

S2 → A3B1 A3 → S2 A3 → a B1 → b

Then we would obtain the following productions:

S2 → A3B1 A3 → a A3 → aC C → B1 C → B1C B1 → b

After elimination of the unary production C → B1, this yields

S2 → A3B1 A3 → a A3 → aC C → b C → B1C B1 → b

Question 3 (PDA)

Give a PDA that recognizes the following language: {anbmcdmen |n,m ≥ 0}.

Solution: PDA M = 〈Q,Σ,Γ, δ, q0, Z0, F 〉 with

• Q = {q1, q2, q3, q4}; Σ = {a, b, c, d, e}; Γ = {#, E,D};

• q1 initial state, # initial stack symbol; F = {q4};

• δ(q1, a, ε) = {〈q1, E〉}, δ(q1, b, ε) = {〈q2, D〉}, δ(q1, c, ε) = {〈q3, ε〉},
δ(q2, b, ε) = {〈q2, D〉}, δ(q2, c, ε) = {〈q3, ε〉},
δ(q3, d,D) = {〈q3, ε〉}, δ(q3, e, E) = {〈q3, ε〉}, δ(q3, ε,#) = {〈q4,#〉}.

2

It holds that L(M) = {anbmcdmen |n,m ≥ 0}, i.e., this PDA recognizes the language in question with
acceptance with final state.

Question 4 (PDA)

Consider the CFG G with non-terminals {S,A,B}, terminals {a, b}, start symbol S and productions

S → aSB S → aB B → b

Give the three different PDAs that are equivalent to this grammar and that are described on the PDA
slides 12 and 13.

Solution:

1. M = 〈{q}, {a, b}, {S,B}, δ, q, S, ∅〉 with

δ(q, a, S) = {〈q, SB〉, 〈q,B〉}, δ(q, b, B) = {〈q, ε〉}.
In all other cases, δ yields ∅.
Acceptance with the empty stack.

2. M = 〈{q0, q1, qf}, {a, b}, {S,B, a, b, Z0}, δ, q0, Z0, {qf}〉 with

δ(q0, ε, Z0) = {〈q1, SZ0〉},
δ(q1, ε, S) = {〈q1, aSB〉, 〈q1, aB〉}, δ(q1, ε, B) = {〈q1, b〉},
δ(q1, a, a) = {〈q1, ε〉}, δ(q1, b, b) = {〈q1, ε〉},
δ(q1, ε, Z0) = {〈qf , ε〉}.
In all other cases, δ yields ∅.
Acceptance in the final state qf .

3. M = 〈{q0, q1, qf}, {a, b}, {S,B, a, b, Z0}, δ, q0, Z0, {qf}〉 with

〈q0, a〉 ∈ δ(q0, a, ε), 〈q0, b〉 ∈ δ(q0, b, ε).
〈q0, S〉 ∈ δ(q0, ε, BSa), 〈q0, S〉 ∈ δ(q0, ε, Ba), 〈q0, B〉 ∈ δ(q0, ε, b).
〈q1, ε〉 ∈ δ(q0, ε, S)

〈qf , ε〉 ∈ δ(q1, ε, Z0)

These are all elements in the values of the δ function.

Question 5 (Unger parser)

1. Give the pseudocode for the Unger recognizer with tabulation under the assumption that the CFG
is in Chomksy normal form.

As a notation for substrings of the input w = w1 . . . wn (w1, . . . , wn ∈ T), use the following pairs
of indices: 〈i, j〉 for 1 ≤ i ≤ j ≤ n stands for the substring wi . . . wj.

In other words, you have to tabulate results 〈A, i, j, res〉 whenever a call unger(A, 〈i, j〉) has returned
res.

2. Extend this pseudocode such that the parser generates a parse forest grammar, i.e., a set of produc-
tions of the form 〈X, 〈i, j〉〉 → 〈X1, 〈i1, j1〉〉 . . . 〈Xk, 〈ik, jk〉〉.
For this, we need two global structures that get filled:

(a) the chart C that tells us whether a category X with a span 〈i, j〉 has already been tested and if
so, with which result, and

(b) the list of productions annotated with spans that have been successfully parsed.

3

Solution:

Since the CFG is in CNF, it does in particular not contain ε-productions or unary productions. Conse-
quently, we don’t need to check for loops.

Initially, for a given (global) w = w1 . . . wn, we call the parser with unger(〈0, n〉, S)
We assume a global set R of already computed results, initialized with ∅.

1. function unger(〈i, j〉,A):
out := false;

if there is a res with 〈A, i, j, res〉 ∈ R,
then return res;

else if (j = i+ 1 and A→ wj ∈ P),
then out := true

else for all A→ BC ∈ P:
for all k with i < k < j:

if unger(〈i, k〉, B) and unger(〈k, j〉, C)
then out := true;

add 〈A, i, j, out〉 to R;

return out

2. In order to turn this into a parser, we add a set F of span-annotated productions that present the
parse forest, initialized with ∅. The parts that are added are bold:

function unger(〈i, j〉,A):
out := false;

if there is a res with 〈A, i, j, res〉 ∈ R,
then return res;

else if (j = i+ 1 and A→ wj ∈ P),
then add 〈A, 〈i, j〉〉 → 〈wj , 〈i, j〉〉 to F;

out := true

else for all A→ BC ∈ P:
for all k with i < k < j:

if unger(〈i, k〉, B) and unger(〈k, j〉, C)
then add 〈A, 〈i, j〉〉 → 〈B, 〈i, k〉〉 〈C, 〈k, j〉〉 to F;

out := true;

add 〈A, i, j, out〉 to R;

return out

Question 6 (Top-Down Parsing)

Consider a CFG with non-terminals {S,A,B}, terminals {a, b}, start symbol S and the following pro-
ductions: S → AB |BA,B → b |BS,A→ a |AS.

1. Give the parse trees for w = abab.

2. Give the sequence of triples of remaining input, analysis and prediction stack that arises when
performing a directional top-down parsing with this grammar with a depth-first strategy such that
the parsing stops once a first analysis is reached.

Give the analysis stack with its top on the left.

4

3. Give the corresponding leftmost derivation (can be read off the analysis stack).

Solution:

1. S

B

S

B

b

A

a

B

b

A

a

S

B

b

A

S

A

a

B

b

A

a

2.

input analysis stack stack
abab S
abab S1 AB
abab S1A1 aB
bab S1A1a B
bab S1A1aB1 b
ab S1A1aB1b ε

bab S1A1aB2 BS
bab S1A1aB2B1 bS
ab S1A1aB2B1b S
ab S1A1aB2B1bS1 AB
ab S1A1aB2B1bS1A1 aB
b S1A1aB2B1bS1A1a B
b S1A1aB2B1bS1A1aB1 b
ε S1A1aB2B1bS1A1aB1b ε

3. S ⇒ AB ⇒ aB ⇒ aBS ⇒ abS ⇒ abAB ⇒ abaB ⇒ abab

Question 7 (Top-down Parsing with deduction rules)

Consider a CFG with the following productions: S → aB | bA,A→ a | aS | bAA,B → b | bS | aBB.

Consider the input w = abba and the deduction rules for top-down parsing.

1. Give all items the parser generates for this input. For every item, indicate the rule that was used
to deduce this item and indicate the antecedent items of this rule.

2. How does the parser know whether w = abba is in the language generated by the grammar?

Solution:

5

1.

id item operation antecedent items
1 [S, 0] axiom –
2 [aB, 0] predict 1
3 [bA, 0] predict 1
4 [B, 1] scan 2
5 [b, 1] predict 4
6 [bS, 1] predict 4
7 [aBB, 1] predict 4
8 [ε, 2] scan 5
9 [S, 2] scan 6
10 [aB, 2] predict 9
11 [bA, 2] predict 9
12 [A, 3] scan 10
13 [a, 3] predict 12
14 [aS, 3] predict 12
15 [bAA, 3] predict 12
16 [ε, 4] scan 13
17 [S, 4] scan 14
18 [aB, 4] predict 17
19 [bA, 4] predict 17

2. There is a goal item [ε, 4] in the chart, therefore the word is in the language.

Question 8 (Unger with deduction rules)

Consider a CFG with the following productions: S → aSc | aT | ac, T → cT | c.
Consider the input w = ac and the deduction rules for non-directional top-down parsing (= Unger pars-
ing).

1. Give all items the parser generates for this input. For every item, indicate the rule that was used
to deduce this item and indicate the antecedent items of this rule.

2. How does the parser know whether w = ac is in the language generated by the grammar?

Solution:

1.

id item operation antecedent items
1 [•S, 0, 2] axiom –
2 [•a, 0, 1] predict 1
3 [•T, 1, 2] predict 1
4 [•c, 1, 2] predict 1
5 [a•, 0, 1] scan 2
6 [c•, 1, 2] scan 4
7 [T•, 1, 2] complete 3,6
8 [S•, 0, 2] complete 1,5,6 or 1,5,7

2. There is a goal item [S•, 0, 2] in the chart, therefore the word is in the language.

Question 9 (Unger deduction rules for CNF)

Consider the Unger Parser for CFGs in Chomsky Normal Form. Define

First(A) = {a | a ∈ T,A ∗⇒ aα for some α ∈ (N ∪ T)∗}

Last(A) = {a | a ∈ T,A ∗⇒ αa for some α ∈ (N ∪ T)∗}
Assume that for a given CFG in CNF, for all non-terminals A, the sets First(A) and Last(A) are
precompiled and can be used to restrict the Unger predictions.

6

Give the deduction rules for the Unger Parser for CFGs in CNF where the predictions are constrained by
the sets First and Last.

Solution:

Predict:
[•A, i, k]

[•B, i, j], [•C, j, k]
A→ BC ∈ P, i < j < k,
wi+1 ∈ First(B), wj ∈ Last(B), wj+1 ∈ First(C), wk ∈ Last(C)

Scan:
[•A, i, i+ 1]
[A•, i, i+ 1]

A→ wi+1 ∈ P

Complete:
[•A, i, k], [B•, i, j], [C•, j, k]

[A•, i, k]
A→ BC ∈ P

Question 10 (CYK recognition – general version)

Consider the CFG with non-terminals S,A,C, terminals a, b, start symbol S and productions S → ASC,
S → ε, A→ a, A→ b, C → c.

Give the chart (the (n + 1) × (n + 1)-table) that results from the general CYK algorithm for the input
abaccc.

Solution:

6 S
5
4 S
3
2 S
1 a, A b, A a, A c, C c, C c, C
0 S S S S S S S

1 2 3 4 5 6 7

Question 11 (CYK parsing for CNF grammars)

Consider the CFG with non-terminals S, T,A,B,C,D, terminals a, b, start symbol S and productions
S → AB, S → CT , T → SD, A→ AA, A→ a, B → BB, B → b, C → a, D → b.

This grammar is in Chomsky Normal Form.

1. Give the chart (the n×n-table) that results from the CYK parsing algorithm (for CNF) for the input
aabb. The chart should include not only the non-terminals that we find but the entire productions
with, in the rhs, the indices of the antecedent chart items in the complete rule that has been applied.

2. Give all parse trees for the input.

Solution:

1. Chart:

4 S → A1,2B3,2, S → C1,1T2,3, T → S1,3D4,1

3 S → A1,2B3,1 S → A2,1B3,2, T → S2,2D4,1

2 A→ A1,1A2,1 S → A2,1B3,1 B → B3,1B4,1

1 A→ a, C → a A→ a, C → a B → b, D → b B → b, D → b

1 a 2 a 3 b 4 b

2. parse trees:

7

S

B

B

b

B

b

A

A

a

A

a

S

T

D

b

S

B

b

A

a

C

a

Question 12 (Shift-reduce)

Consider a CFG with the start symbol VP and the following productions:

VP → V NP, VP → VP PP, V → sees,

NP → Det N, Det → the, N → N PP, N → girl, N → telescope,

PP → P NP, P → with

Give all items (pairs of stack and index) that one obtains when doing a directional bottom-up parsing
(shift-reduce parsing) of the input the girl with the telescope.

We assume that whenever a terminal is shifted, we perform a reduce in the next step. (This is due to the
fact that terminal symbols appear in this grammar only in right-hand sides of length 1.)

Is the input in the language generated by the CFG?

Solution:

stack index operation
1. ε 0
2. the 1 shift
3. Det 1 reduce 2.
4. Det girl 2 shift
5. Det N 2 reduce 4.
6. NP 2 reduce 5.
7. Det N with 3 shift 5.
8. NP with 3 shift 6.
9. Det N P 3 reduce 7.
10. NP P 3 reduce 8.
continue with 9:
11. Det N P the 4 shift 9.
12. Det N P Det 4 reduce 11.
13. Det N P Det telescope 5 shift 12.
14. Det N P Det N 5 reduce 13.
15. Det N P NP 5 reduce 14.
16. Det N PP 5 reduce 15.
17. Det N 5 reduce 16.
18. NP 5 reduce 17.

continue with 10:
. . . as in 11.-14. except for the initial NP on the stack . . .
19. NP PP 5

No goal item (stack VP) obtained, therefore the input is not in the language.

Question 13 (Soundness of shift-reduce parsing)

8

Consider the deduction-based definition of shift-reduce parsing. Show the soundness of the algorithm, i.e.,
if [Γ, i] can be deduced then Γ

∗⇒ w1 . . . wi holds.

(Can be shown with an induction over the deduction rules.)

Note that w1 . . . w0 is considered to be the empty word preceding the first terminal in the input.

Solution:

• Axiom: [ε, 0] holds and the part of the input from position 0 to position 0 is just ε. Therefore,

ε
∗⇒ w1 . . . w0 = ε holds trivially.

• Reduce: We have to show that, assuming that our claim holds for the antecedent item [Γα, i] of a
reduce rule, it also holds for the consequent item [ΓA, i]. Because of our induction assumption, we

know that Γα
∗⇒ w1 . . . wi and since this reduction was possible, it follows that A → α ∈ P (side

condition). Consequently ΓA
A→α⇒ Γα

∗⇒ w1 . . . wi and therefore, more generally, ΓA
∗⇒ w1 . . . wi.

• Shift: We have to show that, assuming that our claim holds for the antecedent item [Γ, i] of a shift
rule, it also holds for the consequent item [Γa, i+ 1]. The side condition tells us that a = wi+1, and

our induction assumption yields Γ
∗⇒ w1 . . . wi. If we append the terminal a to both sides in this

derivation, we obtain Γa
∗⇒ w1 . . . wiwi+1, which holds trivially.

Since all items generated by the parser are either the axiom or obtained from the axiom by a sequence
of shift/reduce steps, every item necessarily satisfies our soundness claim.

Question 14 (LL(1) grammar)

Consider a CFG with the following productions: S → AB,A→ aAa,A→ ε, B → bBb,B → ε.

Is this grammar LL(1)?

Solution:

We need to check whether for all A ∈ N with A→ α1| . . . |αn being all A-productions in G, the following
holds: a) First(α1), . . . , First(αn) are pairwise disjoint, and b) if ε ∈ First(αj) for some j ∈ [1..n], then
Follow(A) ∩ First(αi) = ∅ for all 1 ≤ i ≤ n, j 6= i (see slide 6).

The First and Follow sets of the non-terminals are

First(A) = {ε, a}, First(B) = {ε, b}, First(S) = {ε, a, b}.
The Follow sets of the non-terminals are as follows:

Follow(S) = {$}, Follow(A) = {a, b, $}, Follow(B) = {b, $}.
Check of the conditions:

• For S, the condition is trivially fulfilled since there is only one S-production.

• For A, First(aAa) = {a} and First(ε) = {ε} are disjoint.

But: First(aAa) = {a} and Follow(A) = {a, b, $} are not disjoint: {a}∩{a, b, $} = {a}. Therefore
the grammar is not LL(1).

• For B, similarly, First(bBb) = {b} and First(ε) = {ε} are disjoint.

But: First(bBb) = {b} and Follow(B) = {b, $} are not disjoint: {b} ∩ {b, $} = {b}.

Question 15 (Left Corner)

Consider a CFG with the following productions: S → A |BU,A→ aA | a,B → bB | b, U → aUa | aa.

Given an input word aa, give the Left Corner Recognition trace, i.e, the set of stack triples, for this input.
We assume a Reduce operation with lookahead, i.e., Reduce with a new X-production is applied only if the

topmost symbol Y of the stack of predicted categories stands in the relation LC∗ to X, i.e., Y
∗⇒ X

9

Solution:

Γcompl Γtd Γlhs operation
1. aa S –
2. a $S A reduce from 1., A→ a
3. a A$S A reduce from 1., A→ aA
4. Aa S – move from 2.
5. AS AA reduce from 3., A→ a
6. AAS AA reduce from 3., A→ aA failure
7. a $S S reduce from 4., S → A
8. Sa S – move from 7.
9. a – – remove from 8. failure
10. A A$S A move from 5.
11. $S A remove from 10.
12. A S move from 11.
13. $S S reduce from 12., S → A
14. S S – move from 13.
15. – – – remove from 14. success

Question 16 (Left Corner chart parsing)

Consider the left corner chart parsing deduction rules from slide 15. Extend the algorithm with a rule for
ε-productions in order to make it work for arbitrary CFGs.

Solution:

We need the following additional rule:

ε-Scan:
[A, i, 0]

A→ ε ∈ P, 1 ≤ i ≤ n+ 1

Question 17 (Earley Parsing/recognition)

Consider the CFG G3 = 〈N,T, P, S〉 with N = {S,A,B,X}, T = {a, b}, P = {S → ABA, S → aXa,
X → bXb, X → ε, A→ a, A→ aA, B → bb}
Give the chart resulting from an Earley-recognition of abba with prediction lookahead and completion
lookahead:

Predict with lookahead:
[A→ α •Bβ, i, j]

[B → •γ, j, j] B → γ ∈ P,wi+1 ∈ First(γ) or ε ∈ First(γ)

Complete with lookahead:
[A→ α •Bβ, i, j], [B → γ•, j, k]

[A→ αB • β, i, k]
wk+1 ∈ First(β) or ε ∈ First(β)

10

Solution:

S → ABA• A→ a •A
4 S → aXa• A→ a•

A→ •aA
S → aX • a B → bb• A→ •a

3 S → AB •A X → bXb• X → b •Xb X → •
X → bX • b
X → b •Xb X → •

2 B → b • b X → •bXb
S → A •BA
A→ a• B → •bb
A→ a •A X → •

1 S → a •Xa X → •bXb
A→ •a
A→ •aA
S → •aXa

0 S → •ABA
0 1 2 3 4

Question 18 (LR parsing)

Consider the CFG G4 = 〈N,T, P, S〉 with N = {S,A,B,C}, T = {a, b, c} and productions 1.S → ABC,
2.A→ a, 3.A→ aC, 4.B → b, 5.B → bC, 6.C → c. This grammar is not LR(1).

1. Construct the LR(1) states and transitions with the canonical LR algorithm.

2. From this, construct the LR(1) parse table with multiple entries for some of the fields.

Solution:

1.

S′ → •S $
S → •ABC $
A→ •a b
A→ •aC b

q0

A→ a• b
A→ a • C b
C → •c b

q1

S → A •BC $
B → •b c
B → •bC c

q2

S′ → S• $q3 S → AB • C $
C → •c $

q4

B → b• c
B → b • C c
C → •c c

q5

S → ABC• $ q6

C → c• $ q7

C → c• $ q8

B → bC• $ q9

A→ aC• b q10

C → c• b q11

S

a

A

B

b

C

c

c

C

C

c

11

2. Parse table:

a b c $ A B C S
0 s1 2 3
1 r2 s11 10
2 s5 4
3 acc
4 s7 6
5 s8, r4 9
6 r1
7 r6
8 r6
9 r5
10 r3
11 r6

Question 19 (Tomita)

The following table is the LR(1) parse table for the CFG with non-terminals {A,B,X}, terminals {a, b},
start symbol S and productions 1. S → ABA, 2. S → aXa, 3. X → bXb, 4. X → ε, 5. A → a,
6. A→ aA, 7. B → bb

(The table has multiple entries for some of the fields.)

a b $ S A B X
0 s1 4 5
1 s8,r4 s2,r5 16 9
2 s3,r4 10
3 s3,r4 11
4 acc
5 s13 6
6 s14 7
7 r1
8 s8 r5 16
9 s17
10 s18
11 s19
12 r7
13 s12
14 s14 r5 15
15 r6
16 r6
17 r2
18 r3
19 r3

Give the trace of the Tomita-parse for abba (with all intermediate stack graphs and all analyses).

12

Solution:

Stack analysis
0 s1

0 1 1 s2,r5 1 : a

0 1

2

1

5

s2

s13 2 : A(1)

0 1

2

1

5

3

3

2

13

s3,r4

s12 3 : b

0 1

2

1

5

3

3

2

4 10

13

s2

s12

s18

4 : X(ε)

0 1

2

1

5

3

3

2

4 10

13

5

5

5

18

2

12

–

r7

r3

5 : b

0 1

2

1

5

6

3

9

13 5 12

s17

r7 6 : X(3 , 4 , 5)

0 1

2

1

5

6

7

9

6

s17

s14 7 : B(3 , 5)

0 1

2

1

5

6

7

9

6

8

8

17

14

r2

r5 8 : a

0 9

2

4

5 7 6 8 14

acc

r5 9 : S(1 , 6 , 8)

0 9

2

4

5 7 6 10 7

acc

r1 10 : A(8)

0 9

11

4 acc

11 : S(2 , 7 , 10)

0 12 4 acc 12 : [11 , 9]

Question 20 (PCFG)

Consider the PCFG G with non-terminals {S,A,B}, terminals {a, b}, start symbol S and productions

{ 0,5 S → AS,
0,3 S → SB,
0,2 S → AB,
1 A→ a,
1 B → b }

(The numbers preceding the productions are the corresponding probabilities.)

1. Give the inside chart for the input w = aaabbb.

13

2. Give the viterbi chart of a probabilistic CYK parsing of w = aaabbb.

Solution:

1.

6 (S, 0.027) (S, 0.027) (S, 0.018) (B, 1)
5 (S, 0.045) (S, 0.06) (S, 0.06) (B, 1)
4 (S, 0.005) (S, 0.1) (S, 0.2) (B, 1)
3 (A, 1)
2 (A, 1)
1 (A, 1)

1 2 3 4 5 6

2.

6 0.0045 : S → AS, 1
5 0.015 : S → AS, 1 0.009 : S → AS, 1
4 0.05 : S → AS, 1 0.03 : S → AS, 1 0.018 : S → SB, 3
3 0.1 : S → AS, 1 0.06 : S → SB, 2
2 0.2 : S → AB, 1
1 1 : A→ a 1 : A→ a 1 : A→ a 1 : B → b 1 : B → b 1 : B → b

1 2 3 4 5 6

(For some fields of this chart, there are actually several possibilities leading to the same probability.)

Question 21 (PCFG parameter estimation with EM)

Consider the PCFG G = 〈{S,A,X}, {a}, P, S, p〉 (see course slides) with P and p as follows:

0.3: S → AS 0.6: S → AX 0.1: S → a 1: X → SA 1: A → a

Assume that these probabilities are our starting probabilities for a parameter estimation using EM.

Assume that we have a training corpus consisting of 5 sentences, namely 3 sentences aa and 2 sentences
aaa.

1. Give inside and outside values for the two sentences aa and aaa.

2. E-step: Compute the new counts Caa(A → α) and Caaa(A → α) and, based on these, the new
frequency f(A→ α) for all A→ α ∈ P .

3. M-step: Compute the new probabilities p̂(A → α) for all A → α ∈ P , based on the previous
frequencies.

Solution:

1. Inside values α:

aa:
j
2 (3 · 10−2,S),

(0.1,X)
(1,A),
(0.1,S)

1 (1,A),
(0.1,S)
1 2 i

aaa:
j
3 (6.9 ·10−2,S),

(0.03,X)
(3 · 10−2,S),
(0.1,X)

(1,A),
(0.1,S)

2 (3 · 10−2,S),
(0.1,X)

(1,A),
(0.1,S)

1 (1,A),
(0.1,S)
1 2 3 i

Outside values β (only values 6= 0 are given):

14

aa
j
2 (1,S) (0.3,S),

(0.6,X)
1 (0.03,A)

1 2 i

aaa
j
3 (1,S) (0.3,S), (0.6,X) (9 · 10−2,S),

(0.18,X),
(3 · 10−2,A)

2 (0.03,A) (0.6,S),
(8.99 · 10−3,A)

1 (6.9 ·10−2,A)
1 2 3 i

2. Caa(S → AS) =
βS,1,2αA,1,1αS,2,2p(S→AS)

αS,1,2
= 1·1·0.1·0.3

0.03 = 1

Caa(S → AX) =
βS,1,2αA,1,1αX,2,2p(S→AS)

αS,1,2
= 0

Caa(X → SA) = 0

Caaa(S → AS) =
βS,1,3αA,1,1αS,2,3p(S→AS)

αS,1,3
+

βS,1,2αA,1,1αS,2,2p(S→AS)
αS,1,3

+
βS,2,3αA,2,2αS,3,3p(S→AS)

αS,1,3
=

1·1·0.03·0.3+0+0.3·1·0.1·0.3
0.069 = 0.26

Caaa(S → AX) =
βS,1,3αA,1,1αX,2,3p(S→AX)

αS,1,3
+

βS,1,2αA,1,1αX,2,2p(S→AX)
αS,1,3

+
βS,2,3αA,2,2αX,3,3p(S→AX)

αS,1,3
=

1·1·0.1·0.6+0+0
0.069 = 0.87

Caaa(X → SA) =
βX,2,3αS,2,2αA,3,3p(X→SA)

αS,1,3
= 0.6·0.1·1

0.069 = 0.87

Caa(S → a) =
(βS,1,1+βS,2,2)p(S→a)

αS,1,2
= 0.3·0.1

0.03 = 1

Caa(A→ a) =
(βA,1,1+βA,2,2)p(A→a)

αS,1,2
= 0.03

0.03 = 1

Caaa(S → a) =
(βS,1,1+βS,2,2+βS,3,3)p(S→a)

αS,1,3
= 0.69·0.1

0.069 = 1

Caaa(A→ a) =
(βA,1,1+βA,2,2+βA,3,3)p(A→a)

αS,1,3
= 0.069+0.00899+0.003

0.069 = 1.17

f(S → AS) = 3 · 1 + 2 · 0.26 = 3.52

f(S → AX) = 3 · 0 + 2 · 0.87 = 1.74

f(X → SA) = 3 · 0 + 2 · 0.87 = 1.74

f(S → a) = 3 · 1 + 2 · 1 = 5

f(A→ a) = 3 · 1 + 2 · 1.17 = 5.34

3. p̂(S → AS) = 3.52
3.52+1.74+5 = 0.34

p̂(S → AX) = 1.74
3.52+1.74+5 = 0.17

p̂(S → a) = 2.99
3.52+1.74+5 = 0.29

p̂(X → SA) = p̂(A→ a) = 1

Question 22 (A∗ parsing)

Consider the PCFG given in the example on slides 14 (A∗ slides) and the outside scores computed on the
subsequent slides.

As input consider “red ugly camping car”.

1. Show the weighted deductive CYK-Parsing with chart and agenda using this grammar and input
with weights as described on slide 18 (incorporating the viterbi inside score and the SX outside
estimate).

Write each weight as a pair (in, out) where in is the inside viterbi score and out the outside estimate
(using |log(p)| instead of p).

Concerning the chart column, it is enough to list only new items in each row. (This is different from
the agenda where items are not only added but also removed and reordering depending on weights
takes place.)

15

2. The log used here is log10. Compute the probability of the best parse tree from the weight of the goal
item.

Solution:

1.

Chart Agenda
(0.6,3.8):[A, 1, 2], (0.7,3.8):[A, 0, 1], (0.7,4.1):[N, 2, 3], (1,3.8):[N, 0, 1],
(1,4.1):[N, 3, 4]

(0.6,3.8):[A, 1, 2] (0.7,3.8):[A, 0, 1], (0.7,4.1):[N, 2, 3], (1,3.8):[N, 0, 1], (1,4.1):[N, 3, 4]
(0.7,3.8):[A, 0, 1] (0.7,4.1):[N, 2, 3], (1,3.8):[N, 0, 1], (1,4.1):[N, 3, 4]
(0.7,4.1):[N, 2, 3] (1,3.8):[N, 0, 1], (0.6+0.7+0.7,2.9):[N, 1, 3], (1,4.1):[N, 3, 4]
(1,3.8):[N, 0, 1] (2,2.9):[N, 1, 3], (1,4.1):[N, 3, 4]
(2,2.9):[N, 1, 3] (1,4.1):[N, 3, 4], (min{0.7 + 2 + 0.7, 1 + 2 + 1},1.7):[N, 0, 3]
(1,4.1):[N, 3, 4] (3.4,1.7):[N, 0, 3], (2+1+1,1.2):[N, 1, 4], (0.7+1+1,2.9):[N, 2, 4]
(3.4,1.7):[N, 0, 3] (4,1.2):[N, 1, 4], (3.4+1+1,0):[N, 0, 4], (2.7,2.9):[N, 2, 4]
(4,1.2):[N, 1, 4] (5.4,0):[N, 0, 4], (2.7,2.9):[N, 2, 4]

The last operation does not add to the agenda because all the new items one could possibly build
(combining [N, 1, 4] with [A, 0, 1] or [N, 0, 1]) already exist in the agenda and the weights of the
new items are higher or equal to the one of the already existing.

Algorithm stops because goal item [N, 0, 4] has been reached as top agenda item.

2. The inside score in the weight of the goal item [N, 0, 4] is 5.4. The probability of the best parse
tree is therefore 10−5.4 = 1

105.4 = 3.98 · 10−6 ≈ 4 · 10−6.

Question 23 (A∗ parsing) Consider the PCFG G = 〈N,T, P, S, p〉 with N = {S,A,B}, T = {a, b}
and

P = { 0, 3 S → AB

0, 7 S → BA

0, 1 A → AS

0, 9 A → a

0, 6 B → BS

0, 4 B → b}.

(The numbers preceding the rules are the corresponding probabilities.)

Compute the estimates of the inside viterbi scores in(X, l) for non-terminals X ∈ N and lengths 1 ≤ l ≤ 4.

Use the following values for the weights:

| log(0, 1)| = 1, 00 | log(0, 3)| = 0, 52 | log(0, 4)| = 0, 40

| log(0, 6)| = 0, 22 | log(0, 7)| = 0, 15 | log(0, 9)| = 0, 05

Solution:

S ∞ 0, 6 ∞ 1, 42
A 0, 05 ∞ 1, 65 ∞
B 0, 40 ∞ 1, 22 ∞

1 2 3 4 l

Question 24 (A∗ parsing)

Consider the PCFG G with N = {S,A}, T = {a}, start symbol S and productions

0.5 S → SS 0.125 S → AS 0.25 S → SA
0.125 S → a 1 A→ a

For weights, use |log2(p)|.

16

1. Compute the inside viterbi estimates for lengths 1 ≤ l ≤ 4 and the outside SX estimates for length
n = 4.

2. Use these values for an A∗ parsing of aaaa.

Solution:

1. Inside estimates:

S 3 5 7 9
A 0 ∞ ∞ ∞

1 2 3 4 l

Outside SX estimates:

• l = 4:

out(A, 0, 4, 0) =∞, out(N, 0, 4, 0) = 0

• l = 3:

out(A, 0, 3, 1) = 3 + 3 = 6

out(A, 1, 3, 0) = 3 + 2 = 5

out(S, 0, 3, 1) = min{4, 2} = 2

out(S, 1, 3, 0) = min{4, 3} = 3

• l = 2:

out(A, 0, 2, 2) = min{3 + 3 + 2, 3 + 5 + 0} = 8

out(A, 1, 2, 1) = min{2 + 3 + 2, 3 + 3 + 3} = 7

out(A, 2, 2, 0) = min{2 + 3 + 3, 2 + 5 + 0} = 7

out(S, 0, 2, 2) = min{1 + 3 + 2, 1 + 5 + 0, 2 + 0 + 2} = 4

out(S, 1, 2, 1) = min{2 + 0 + 3, 3 + 0 + 2, 1 + 3 + 2, 1 + 3 + 3} = 5

out(S, 2, 2, 0) = min{1 + 3 + 3, 1 + 5 + 0, 3 + 0 + 3} = 6

• l = 1:

out(A, 0, 1, 3) = min{3 + 3 + 4, 3 + 5 + 2, 3 + 7 + 0} = 10

out(A, 1, 1, 2) = min{3 + 3 + 5, 3 + 5 + 3, 2 + 3 + 4} = 9

out(A, 2, 1, 1) = min{3 + 3 + 4, 2 + 3 + 5, 2 + 5 + 2} = 9

out(A, 3, 1, 0) = min{2 + 3 + 6, 2 + 5 + 3, 2 + 7 + 0} = 9

out(S, 0, 1, 3) = min{1 + 3 + 4, 1 + 5 + 2, 1 + 7 + 0, 2 + 0 + 4} = 6

out(S, 1, 1, 2) = min{1 + 3 + 5, 1 + 5 + 3, 1 + 3 + 4, 2 + 0 + 5, 3 + 0 + 4} = 7

out(S, 2, 1, 1) = min{1 + 3 + 5, 1 + 3 + 6, 1 + 5 + 2, 2 + 0 + 6, 3 + 0 + 5} = 8

out(S, 3, 1, 0) = min{1 + 3 + 6, 1 + 5 + 3, 1 + 7 + 0, 3 + 0 + 6} = 8

2. Parsing of aaaa:

Chart Agenda
(0,9):[A, 1, 2], (0,9):[A, 2, 3], (0,9):[A, 3, 4], (3,6):[S, 0, 1],
(0,10):[A, 0, 1], (3,7):[S, 1, 2], (3,8):[S, 2, 3], (3,8):[S, 3, 4]

(0,9):[A, 1, 2] (0,9):[A, 2, 3], (0,9):[A, 3, 4], (3,6):[S, 0, 1],
(0,10):[A, 0, 1], (3,7):[S, 1, 2], (3,8):[S, 2, 3], (3,8):[S, 3, 4]

(0,9):[A, 2, 3] (0,9):[A, 3, 4], (3,6):[S, 0, 1],
(0,10):[A, 0, 1], (3,7):[S, 1, 2], (3,8):[S, 2, 3], (3,8):[S, 3, 4]

(0,9):[A, 3, 4] (3,6):[S, 0, 1],
(0,10):[A, 0, 1], (3,7):[S, 1, 2], (3,8):[S, 2, 3], (3,8):[S, 3, 4]

(3,6):[S, 0, 1] (3+0+2,4):[S, 0, 2], (0,10):[A, 0, 1], (3,7):[S, 1, 2], (3,8):[S, 2, 3],
(3,8):[S, 3, 4]

(5,4):[S, 0, 2] (5+0+2,2):[S, 0, 3], (0,10):[A, 0, 1], (3,7):[S, 1, 2], (3,8):[S, 2, 3],
(3,8):[S, 3, 4],

(7,2):[S, 0, 3] (7+0+2,0):[S, 0, 4], (0,10):[A, 0, 1], (3,7):[S, 1, 2], (3,8):[S, 2, 3],
(3,8):[S, 3, 4],

17

Parser stops since top agenda item is a goal item.

18

