Parsing
 Exercises

Laura Kallmeyer

WS 2017/2018, Heinrich-Heine-Universität Düsseldorf

Question 1 (Grammars)

Consider the following three languages:

- $L_{1}=\left\{a^{n} b^{m} c d^{m} e^{n} \mid n, m \geq 0\right\}$
- $L_{2}=\left\{(a b)^{n} c d^{m} \mid n, m \geq 0\right\}$
- $L_{3}=\left\{a^{n} b(c d)^{n} e^{n} \mid n \geq 0\right\}$

One of the languages is regular, one context-free and not regular and one not context-free. Which are the regular and the non-regular context-free languages? Justify your answer by giving the corresponding grammars.

Solution:
L_{2} is regular: $S \rightarrow a b S, S \rightarrow c, S \rightarrow c B, B \rightarrow d, B \rightarrow d B$.
L_{1} is context-free: $S \rightarrow a S e, S \rightarrow T, T \rightarrow b T d, T \rightarrow c$.
L_{3} is context-sensitive:
$S \rightarrow G b H, S \rightarrow b$,
$G \rightarrow G A, A a \rightarrow a A, A b \rightarrow a b C$,
$C c d \rightarrow c d C, C \rightarrow c d E, E e \rightarrow e E, E H \rightarrow e H$
$G \rightarrow A^{\prime}, A^{\prime} a \rightarrow a A^{\prime}, A^{\prime} b \rightarrow a b C^{\prime}$,
$C^{\prime} c d \rightarrow c d C^{\prime}, C^{\prime} e \rightarrow c d e, C^{\prime} H \rightarrow c d e, H \rightarrow e$
(this grammar was not required)

Question 2 (CFG)

1. Consider the $C F G G_{1}$ with non-terminals $\{S, T, A, B\}$, terminals $\{a, b\}$, start symbol S and productions
$S \rightarrow A T A \quad S \rightarrow B T B$
$T \rightarrow A T A \quad T \rightarrow B T B \quad T \rightarrow \epsilon$
$A \rightarrow a \quad B \rightarrow b$
(a) Transform G_{1} into an equivalent $C F G G_{1}^{\prime}$ without ϵ-productions.
(b) Transform G_{1}^{\prime} into an equivalent $C F G G_{1}^{\prime \prime}$ in Chomsky Normal Form.
2. Consider the $C F G G_{2}$ with non-terminals $\{S, A, B\}$, terminals $\{a, b\}$, start symbol S and productions

$$
S \rightarrow A B \quad A \rightarrow S \quad A \rightarrow a \quad B \rightarrow b
$$

Transform G_{2} into an equivalent $C F G G_{2}^{\prime}$ without left recursion.

Solution:

1. (a) First, calculate the set N_{ϵ} of all $A \in N$ such that $A \stackrel{*}{\Rightarrow} \epsilon: N_{\epsilon}=\{T\}$

Consequently, the productions in G_{1}^{\prime} are

$$
\begin{array}{llll}
S \rightarrow A T A & S \rightarrow B T B & S \rightarrow A A & S \rightarrow B B \\
T \rightarrow A T A & T \rightarrow B T B & T \rightarrow A A & T \rightarrow B B \\
A \rightarrow a & B \rightarrow b & &
\end{array}
$$

(b) For the transformation into CNF, we introduce new non-terminals C_{1}, C_{2}. The new set of productions in $G_{1}^{\prime \prime}$ is

$$
\begin{array}{llll}
S \rightarrow A C_{1} & S \rightarrow B C_{2} & S \rightarrow A A & S \rightarrow B B \\
T \rightarrow A C_{1} & T \rightarrow B C_{2} & T \rightarrow A A & T \rightarrow B B \\
C_{1} \rightarrow T A & C_{2} \rightarrow T B & A \rightarrow a & B \rightarrow b
\end{array}
$$

2. We put indices on our non-terminals: B has index $1, A$ index 2 and S index 3:

$$
S_{3} \rightarrow A_{2} B_{1} \quad A_{2} \rightarrow S_{3} \quad A_{2} \rightarrow a \quad B_{1} \rightarrow b
$$

Obviously, this grammar is left-recursive: $S_{3} \Rightarrow A_{2} B_{1} \Rightarrow S_{3} B_{1}$
For the indices 1 and 2 the condition that every rhs starts either with a terminal or with a nonterminal of higher index is satisfied.
Consider S_{3} : in order to remove the problematic production $S_{3} \rightarrow A_{2} B_{1}$, we replace A_{2} with the rhs of A_{2}-productions. Our new productions are

$$
S_{3} \rightarrow S_{3} B_{1} \quad S_{3} \rightarrow a B_{1} \quad A_{2} \rightarrow S_{3} \quad A_{2} \rightarrow a \quad B_{1} \rightarrow b
$$

Now we have one left-recursive productions, $S_{3} \rightarrow S_{3} B_{1}$, that still needs to be removed:
We introduce a new non-terminal C and replace $S_{3} \rightarrow S_{3} B_{1}, S_{3} \rightarrow a B_{1}$
with $S_{3} \rightarrow a B_{1}, S_{3} \rightarrow a B_{1} C, C \rightarrow B_{1} C, C \rightarrow B_{1}$.
As a result, we obtain the following productions:

$$
S_{3} \rightarrow a B_{1} \quad S_{3} \rightarrow a B_{1} C \quad C \rightarrow B_{1} C \quad C \rightarrow B_{1} \quad A_{2} \rightarrow S_{3} \quad A_{2} \rightarrow a \quad B_{1} \rightarrow b
$$

Note that by this transformation, the non-terminal A_{2} became useless since it is no longer reachable from the start symbol. Furthermore, we have unary productions.
If we remove the productions with the useless symbol A_{2} and if we eliminate the unary productions, we obtain the productions

$$
S_{3} \rightarrow a B_{1} \quad S_{3} \rightarrow a B_{1} C \quad C \rightarrow B_{1} C \quad C \rightarrow b \quad B_{1} \rightarrow b
$$

We could also start with different indices, e.g.,

$$
S_{2} \rightarrow A_{3} B_{1} \quad A_{3} \rightarrow S_{2} \quad A_{3} \rightarrow a \quad B_{1} \rightarrow b
$$

Then we would obtain the following productions:

$$
S_{2} \rightarrow A_{3} B_{1} \quad A_{3} \rightarrow a \quad A_{3} \rightarrow a C \quad C \rightarrow B_{1} \quad C \rightarrow B_{1} C \quad B_{1} \rightarrow b
$$

After elimination of the unary production $C \rightarrow B_{1}$, this yields

$$
S_{2} \rightarrow A_{3} B_{1} \quad A_{3} \rightarrow a \quad A_{3} \rightarrow a C \quad C \rightarrow b \quad C \rightarrow B_{1} C \quad B_{1} \rightarrow b
$$

Question 3 (PDA)

Give a PDA that recognizes the following language: $\left\{a^{n} b^{m} c d^{m} e^{n} \mid n, m \geq 0\right\}$.
Solution: PDA $M=\left\langle Q, \Sigma, \Gamma, \delta, q_{0}, Z_{0}, F\right\rangle$ with

- $Q=\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\} ; \Sigma=\{a, b, c, d, e\} ; \Gamma=\{\#, E, D\}$;
- q_{1} initial state, $\#$ initial stack symbol; $F=\left\{q_{4}\right\}$;
- $\delta\left(q_{1}, a, \epsilon\right)=\left\{\left\langle q_{1}, E\right\rangle\right\}, \delta\left(q_{1}, b, \epsilon\right)=\left\{\left\langle q_{2}, D\right\rangle\right\}, \delta\left(q_{1}, c, \epsilon\right)=\left\{\left\langle q_{3}, \epsilon\right\rangle\right\}$,
$\delta\left(q_{2}, b, \epsilon\right)=\left\{\left\langle q_{2}, D\right\rangle\right\}, \delta\left(q_{2}, c, \epsilon\right)=\left\{\left\langle q_{3}, \epsilon\right\rangle\right\}$,
$\delta\left(q_{3}, d, D\right)=\left\{\left\langle q_{3}, \epsilon\right\rangle\right\}, \delta\left(q_{3}, e, E\right)=\left\{\left\langle q_{3}, \epsilon\right\rangle\right\}, \delta\left(q_{3}, \epsilon, \#\right)=\left\{\left\langle q_{4}, \#\right\rangle\right\}$.

It holds that $L(M)=\left\{a^{n} b^{m} c d^{m} e^{n} \mid n, m \geq 0\right\}$, i.e., this PDA recognizes the language in question with acceptance with final state.

Question 4 (PDA)

Consider the CFG G with non-terminals $\{S, A, B\}$, terminals $\{a, b\}$, start symbol S and productions $S \rightarrow a S B \quad S \rightarrow a B \quad B \rightarrow b$
Give the three different PDAs that are equivalent to this grammar and that are described on the PDA slides 12 and 13.

Solution:

1. $M=\langle\{q\},\{a, b\},\{S, B\}, \delta, q, S, \emptyset\rangle$ with
$\delta(q, a, S)=\{\langle q, S B\rangle,\langle q, B\rangle\}, \delta(q, b, B)=\{\langle q, \varepsilon\rangle\}$.
In all other cases, δ yields \emptyset.
Acceptance with the empty stack.
2. $M=\left\langle\left\{q_{0}, q_{1}, q_{f}\right\},\{a, b\},\left\{S, B, a, b, Z_{0}\right\}, \delta, q_{0}, Z_{0},\left\{q_{f}\right\}\right\rangle$ with
$\delta\left(q_{0}, \varepsilon, Z_{0}\right)=\left\{\left\langle q_{1}, S Z_{0}\right\rangle\right\}$,
$\delta\left(q_{1}, \varepsilon, S\right)=\left\{\left\langle q_{1}, a S B\right\rangle,\left\langle q_{1}, a B\right\rangle\right\}, \delta\left(q_{1}, \varepsilon, B\right)=\left\{\left\langle q_{1}, b\right\rangle\right\}$,
$\delta\left(q_{1}, a, a\right)=\left\{\left\langle q_{1}, \varepsilon\right\rangle\right\}, \delta\left(q_{1}, b, b\right)=\left\{\left\langle q_{1}, \varepsilon\right\rangle\right\}$,
$\delta\left(q_{1}, \varepsilon, Z_{0}\right)=\left\{\left\langle q_{f}, \varepsilon\right\rangle\right\}$.
In all other cases, δ yields \emptyset.
Acceptance in the final state q_{f}.
3. $M=\left\langle\left\{q_{0}, q_{1}, q_{f}\right\},\{a, b\},\left\{S, B, a, b, Z_{0}\right\}, \delta, q_{0}, Z_{0},\left\{q_{f}\right\}\right\rangle$ with
$\left\langle q_{0}, a\right\rangle \in \delta\left(q_{0}, a, \varepsilon\right),\left\langle q_{0}, b\right\rangle \in \delta\left(q_{0}, b, \varepsilon\right)$.
$\left\langle q_{0}, S\right\rangle \in \delta\left(q_{0}, \epsilon, B S a\right),\left\langle q_{0}, S\right\rangle \in \delta\left(q_{0}, \epsilon, B a\right),\left\langle q_{0}, B\right\rangle \in \delta\left(q_{0}, \epsilon, b\right)$.
$\left\langle q_{1}, \epsilon\right\rangle \in \delta\left(q_{0}, \epsilon, S\right)$
$\left\langle q_{f}, \epsilon\right\rangle \in \delta\left(q_{1}, \epsilon, Z_{0}\right)$
These are all elements in the values of the δ function.

Question 5 (Unger parser)

1. Give the pseudocode for the Unger recognizer with tabulation under the assumption that the CFG is in Chomksy normal form.
As a notation for substrings of the input $w=w_{1} \ldots w_{n}\left(w_{1}, \ldots, w_{n} \in T\right)$, use the following pairs of indices: $\langle i, j\rangle$ for $1 \leq i \leq j \leq n$ stands for the substring $w_{i} \ldots w_{j}$.
In other words, you have to tabulate results $\langle A, i, j$, res \rangle whenever a call unger $(A,\langle i, j\rangle)$ has returned res.
2. Extend this pseudocode such that the parser generates a parse forest grammar, i.e., a set of productions of the form $\langle X,\langle i, j\rangle\rangle \rightarrow\left\langle X_{1},\left\langle i_{1}, j_{1}\right\rangle\right\rangle \ldots\left\langle X_{k},\left\langle i_{k}, j_{k}\right\rangle\right\rangle$.
For this, we need two global structures that get filled:
(a) the chart \mathcal{C} that tells us whether a category X with a span $\langle i, j\rangle$ has already been tested and if so, with which result, and
(b) the list of productions annotated with spans that have been successfully parsed.

Solution:

Since the CFG is in CNF, it does in particular not contain ϵ-productions or unary productions. Consequently, we don't need to check for loops.

Initially, for a given (global) $w=w_{1} \ldots w_{n}$, we call the parser with unger $(\langle 0, n\rangle, S)$
We assume a global set R of already computed results, initialized with \emptyset.

1. function unger $(\langle i, j\rangle, A)$:
```
out := false;
if there is a res with }\langleA,i,j,res\rangle\inR
then return res;
else if ( }j=i+1\mathrm{ and }A->\mp@subsup{w}{j}{}\inP)\mathrm{ ,
    then out := true
    else for all }A->BC\inP\mathrm{ :
            for all k with i<k<j:
                if unger( }\langlei,k\rangle,B) and unger(\langlek,j\rangle,C
                then out := true;
        add }\langleA,i,j,out\rangle to R
```

 return out
 2. In order to turn this into a parser, we add a set F of span-annotated productions that present the parse forest, initialized with \emptyset. The parts that are added are bold:
```
function unger(\langlei,j\rangle,A):
out := false;
if there is a res with }\langleA,i,j,res\rangle\inR
then return res;
else if ( }j=i+1\mathrm{ and }A->\mp@subsup{w}{j}{}\inP)\mathrm{ ,
    then add }\langleA,\langlei,j\rangle\rangle->\langle\mp@subsup{w}{j}{},\langlei,j\rangle\rangle\mathrm{ to }F\mathrm{ ;
        out := true
    else for all }A->BC\inP
        for all }k\mathrm{ with i<k<j:
            if unger( }\langlei,k\rangle,B)\mathrm{ and unger( }\langlek,j\rangle,C
            then add }\langleA,\langlei,j\rangle\rangle->\langleB,\langlei,k\rangle\rangle\langleC,\langlek,j\rangle\rangle to F
                out := true;
    add }\langleA,i,j,out\rangle to R
    return out
```


Question 6 (Top-Down Parsing)

Consider a CFG with non-terminals $\{S, A, B\}$, terminals $\{a, b\}$, start symbol S and the following productions: $S \rightarrow A B|B A, B \rightarrow b| B S, A \rightarrow a \mid A S$.

1. Give the parse trees for $w=a b a b$.
2. Give the sequence of triples of remaining input, analysis and prediction stack that arises when performing a directional top-down parsing with this grammar with a depth-first strategy such that the parsing stops once a first analysis is reached.

Give the analysis stack with its top on the left.
3. Give the corresponding leftmost derivation (can be read off the analysis stack).

Solution:
1.

input	analysis stack	stack
abab		S
abab	S_{1}	AB
abab	$\mathrm{S}_{1} \mathrm{~A}_{1}$	aB
bab	$\mathrm{S}_{1} \mathrm{~A}_{1} \mathrm{a}$	B
bab	$\mathrm{S}_{1} \mathrm{~A}_{1} \mathrm{aB}_{1}$	b
ab	$\mathrm{S}_{1} \mathrm{~A}_{1} \mathrm{aB}_{1} \mathrm{~b}$	ε
bab	$\mathrm{S}_{1} \mathrm{~A}_{1} \mathrm{aB}_{2}$	BS
bab	$\mathrm{S}_{1} \mathrm{~A}_{1} \mathrm{aB}_{2} \mathrm{~B}_{1}$	bS
ab	$\mathrm{S}_{1} \mathrm{~A}_{1} \mathrm{aB}_{2} \mathrm{~B}_{1} \mathrm{~b}$	S
ab	$\mathrm{S}_{1} \mathrm{~A}_{1} \mathrm{aB}_{2} \mathrm{~B}_{1} \mathrm{bS}_{1}$	AB
ab	$\mathrm{S}_{1} \mathrm{~A}_{1} \mathrm{aB}_{2} \mathrm{~B}_{1} \mathrm{bS}_{1} \mathrm{~A}_{1}$	aB
b	$\mathrm{S}_{1} \mathrm{~A}_{1} \mathrm{aB}_{2} \mathrm{~B}_{1} \mathrm{bS}_{1} \mathrm{~A}_{1} \mathrm{a}$	B
b	$\mathrm{S}_{1} \mathrm{~A}_{1} \mathrm{aB}_{2} \mathrm{~B}_{1} \mathrm{bS}_{1} \mathrm{~A}_{1} \mathrm{aB}_{1}$	b
ε	$\mathrm{~S}_{1} \mathrm{~A}_{1} \mathrm{aB}_{2} \mathrm{~B}_{1} \mathrm{bS}_{1} \mathrm{~A}_{1} \mathrm{aB}_{1} \mathrm{~b}$	ε

3. $S \Rightarrow A B \Rightarrow a B \Rightarrow a B S \Rightarrow a b S \Rightarrow a b A B \Rightarrow a b a B \Rightarrow a b a b$

Question 7 (Top-down Parsing with deduction rules)

Consider a CFG with the following productions: $S \rightarrow a B|b A, A \rightarrow a| a S|b A A, B \rightarrow b| b S \mid a B B$.
Consider the input $w=a b b a$ and the deduction rules for top-down parsing.

1. Give all items the parser generates for this input. For every item, indicate the rule that was used to deduce this item and indicate the antecedent items of this rule.
2. How does the parser know whether $w=a b b a$ is in the language generated by the grammar?

Solution:

id	item	operation	antecedent items
1	$[S, 0]$	axiom	-
2	$[a B, 0]$	predict	1
3	$[b A, 0]$	predict	1
4	$[B, 1]$	scan	2
5	$[b, 1]$	predict	4
6	$[b S, 1]$	predict	4
7	$[a B B, 1]$	predict	4
8	$[\varepsilon, 2]$	scan	5
9	$[S, 2]$	scan	6
10	$[a B, 2]$	predict	9
11	$[b A, 2]$	predict	9
12	$[A, 3]$	scan	10
13	$[a, 3]$	predict	12
14	$[a S, 3]$	predict	12
15	$[b A A, 3]$	predict	12
16	$[\varepsilon, 4]$	scan	13
17	$[S, 4]$	scan	14
18	$[a B, 4]$	predict	17
19	$[b A, 4]$	predict	17

2. There is a goal item $[\varepsilon, 4]$ in the chart, therefore the word is in the language.

Question 8 (Unger with deduction rules)

Consider a CFG with the following productions: $S \rightarrow a S c|a T| a c, T \rightarrow c T \mid c$.
Consider the input $w=a c$ and the deduction rules for non-directional top-down parsing ($=$ Unger parsing).

1. Give all items the parser generates for this input. For every item, indicate the rule that was used to deduce this item and indicate the antecedent items of this rule.
2. How does the parser know whether $w=a c$ is in the language generated by the grammar?

Solution:

	id	item	operation	antecedent items
	1	$[\bullet S, 0,2]$	axiom	-
	2	$[\bullet a, 0,1]$	predict	1
	3	$[\bullet T, 1,2]$	predict	1
1.	4	$[\bullet c, 1,2]$	predict	1
	5	$[a \bullet, 0,1]$	scan	2
	6	$[c \bullet, 1,2]$	scan	4
7	$[T \bullet, 1,2]$	complete	3,6	
	8	$[S \bullet, 0,2]$	complete	$1,5,6$ or $1,5,7$

2. There is a goal item $[S \bullet, 0,2]$ in the chart, therefore the word is in the language.

Question 9 (Unger deduction rules for CNF)

Consider the Unger Parser for CFGs in Chomsky Normal Form. Define
First $(A)=\left\{a \mid a \in T, A \stackrel{*}{\Rightarrow}\right.$ a α for some $\left.\alpha \in(N \cup T)^{*}\right\}$
$\operatorname{Last}(A)=\left\{a \mid a \in T, A \stackrel{*}{\Rightarrow} \alpha a\right.$ for some $\left.\alpha \in(N \cup T)^{*}\right\}$
Assume that for a given CFG in CNF, for all non-terminals A, the sets First (A) and Last (A) are precompiled and can be used to restrict the Unger predictions.

Give the deduction rules for the Unger Parser for CFGs in CNF where the predictions are constrained by the sets First and Last.

Solution:
Predict: $\frac{[\bullet A, i, k]}{[\bullet B, i, j],[\bullet C, j, k]} \quad \begin{aligned} & A \rightarrow B C \in P, i<j<k, \\ & w_{i+1} \in \operatorname{First}(B), w_{j} \in \operatorname{Last}(B), w_{j+1} \in \operatorname{First}(C), w_{k} \in \operatorname{Last}(C)\end{aligned}$
Scan: $\frac{[\bullet A, i, i+1]}{[A \bullet, i, i+1]} A \rightarrow w_{i+1} \in P$
Complete: $\frac{[\bullet A, i, k],[B \bullet, i, j],[C \bullet, j, k]}{[A \bullet, i, k]} A \rightarrow B C \in P$
Question 10 (CYK recognition - general version)
Consider the CFG with non-terminals S, A, C, terminals a, b, start symbol S and productions $S \rightarrow A S C$, $S \rightarrow \epsilon, A \rightarrow a, A \rightarrow b, C \rightarrow c$.
Give the chart (the $(n+1) \times(n+1)$-table) that results from the general CYK algorithm for the input abaccc.

Solution:

6	S						
5							
4		S					
3							
2			S				
1	a, A	b, A	a, A	c, C	c, C	c, C	
0	S	S	S	S	S	S	S
	1	2	3	4	5	6	7

Question 11 (CYK parsing for CNF grammars)

Consider the CFG with non-terminals S, T, A, B, C, D, terminals a, b, start symbol S and productions $S \rightarrow A B, S \rightarrow C T, T \rightarrow S D, A \rightarrow A A, A \rightarrow a, B \rightarrow B B, B \rightarrow b, C \rightarrow a, D \rightarrow b$.
This grammar is in Chomsky Normal Form.

1. Give the chart (the $n \times n$-table) that results from the CYK parsing algorithm (for CNF) for the input aabb. The chart should include not only the non-terminals that we find but the entire productions with, in the rhs, the indices of the antecedent chart items in the complete rule that has been applied.
2. Give all parse trees for the input.

Solution:

1. Chart:

4	$S \rightarrow A_{1,2} B_{3,2}, S \rightarrow C_{1,1} T_{2,3}, T \rightarrow S_{1,3} D_{4,1}$			
3	$S \rightarrow A_{1,2} B_{3,1}$	$S \rightarrow A_{2,1} B_{3,2}, T \rightarrow S_{2,2} D_{4,1}$		
2	$A \rightarrow A_{1,1} A_{2,1}$	$S \rightarrow A_{2,1} B_{3,1}$	$B \rightarrow B_{3,1} B_{4,1}$	
1	$A \rightarrow a, C \rightarrow a$	$A \rightarrow a, C \rightarrow a$	$B \rightarrow b, D \rightarrow b$	$B \rightarrow b, D \rightarrow b$
	$1 a$	$2 a$	$3 b$	$4 b$

2. parse trees:

Question 12 (Shift-reduce)

Consider a CFG with the start symbol VP and the following productions:
$V P \rightarrow V N P, V P \rightarrow V P P P, V \rightarrow$ sees,
$N P \rightarrow \operatorname{Det} N$, Det \rightarrow the, $N \rightarrow N P P, N \rightarrow$ girl, $N \rightarrow$ telescope,
$P P \rightarrow P N P, P \rightarrow$ with
Give all items (pairs of stack and index) that one obtains when doing a directional bottom-up parsing (shift-reduce parsing) of the input the girl with the telescope.
We assume that whenever a terminal is shifted, we perform a reduce in the next step. (This is due to the fact that terminal symbols appear in this grammar only in right-hand sides of length 1.)
Is the input in the language generated by the CFG?

Solution:

	stack	index	operation
1.	ε	0	
2.	the	1	shift
3.	Det	1	reduce 2.
4.	Det girl	2	shift
5.	Det N	2	reduce 4.
6.	NP	2	reduce 5.
7.	Det N with	3	shift 5.
8.	NP with	3	shift 6.
9.	Det N P	3	reduce 7.
10.	NP P	3	reduce 8.

continue with 9:

11.	Det N P the	4	shift 9.
12.	Det N P Det	4	reduce 11.
13.	Det N P Det telescope	5	shift 12.
14.	Det N P Det N	5	reduce 13.
15.	Det N P NP	5	reduce 14.
16.	Det N PP	5	reduce 15.
17.	Det N	5	reduce 16.
18.	NP	5	reduce 17.

continue with 10:
... as in 11.-14. except for the initial NP on the stack ...
19. \mid NP PP $|5|$

No goal item (stack VP) obtained, therefore the input is not in the language.

Question 13 (Soundness of shift-reduce parsing)

Consider the deduction-based definition of shift-reduce parsing. Show the soundness of the algorithm, i.e., if $[\Gamma, i]$ can be deduced then $\Gamma \stackrel{*}{\Rightarrow} w_{1} \ldots w_{i}$ holds.
(Can be shown with an induction over the deduction rules.)
Note that $w_{1} \ldots w_{0}$ is considered to be the empty word preceding the first terminal in the input.
Solution:

- Axiom: $[\varepsilon, 0]$ holds and the part of the input from position 0 to position 0 is just ε. Therefore, $\varepsilon \stackrel{*}{\Rightarrow} w_{1} \ldots w_{0}=\varepsilon$ holds trivially.
- Reduce: We have to show that, assuming that our claim holds for the antecedent item $[\Gamma \alpha, i]$ of a reduce rule, it also holds for the consequent item $[\Gamma A, i]$. Because of our induction assumption, we know that $\Gamma \alpha \stackrel{*}{\Rightarrow} w_{1} \ldots w_{i}$ and since this reduction was possible, it follows that $A \rightarrow \alpha \in P$ (side condition). Consequently $\Gamma A \stackrel{A \rightarrow \alpha}{\Rightarrow} \Gamma \alpha \stackrel{*}{\Rightarrow} w_{1} \ldots w_{i}$ and therefore, more generally, $\Gamma A \stackrel{*}{\Rightarrow} w_{1} \ldots w_{i}$.
- Shift: We have to show that, assuming that our claim holds for the antecedent item $[\Gamma, i]$ of a shift rule, it also holds for the consequent item $[\Gamma a, i+1]$. The side condition tells us that $a=w_{i+1}$, and our induction assumption yields $\Gamma \stackrel{*}{\Rightarrow} w_{1} \ldots w_{i}$. If we append the terminal a to both sides in this derivation, we obtain $\Gamma a \stackrel{*}{\Rightarrow} w_{1} \ldots w_{i} w_{i+1}$, which holds trivially.

Since all items generated by the parser are either the axiom or obtained from the axiom by a sequence of shift/reduce steps, every item necessarily satisfies our soundness claim.

Question 14 (LL(1) grammar)

Consider a CFG with the following productions: $S \rightarrow A B, A \rightarrow a A a, A \rightarrow \epsilon, B \rightarrow b B b, B \rightarrow \epsilon$.
Is this grammar LL(1)?
Solution:
We need to check whether for all $A \in N$ with $A \rightarrow \alpha_{1}|\ldots| \alpha_{n}$ being all A-productions in G, the following holds: a) $\operatorname{First}\left(\alpha_{1}\right), \ldots, \operatorname{First}\left(\alpha_{n}\right)$ are pairwise disjoint, and b) if $\epsilon \in \operatorname{First}\left(\alpha_{j}\right)$ for some $j \in[1 . . n]$, then $\operatorname{Follow}(A) \cap \operatorname{First}\left(\alpha_{i}\right)=\emptyset$ for all $1 \leq i \leq n, j \neq i$ (see slide 6).
The First and Follow sets of the non-terminals are

$$
\operatorname{First}(A)=\{\epsilon, a\}, \operatorname{First}(B)=\{\epsilon, b\}, \operatorname{First}(S)=\{\epsilon, a, b\} .
$$

The Follow sets of the non-terminals are as follows:

$$
\text { Follow }(S)=\{\$\}, \operatorname{Follow}(A)=\{a, b, \$\}, \text { Follow }(B)=\{b, \$\}
$$

Check of the conditions:

- For S, the condition is trivially fulfilled since there is only one S-production.
- For A, First $(a A a)=\{a\}$ and $\operatorname{First}(\epsilon)=\{\epsilon\}$ are disjoint.

But: First $(a A a)=\{a\}$ and Follow $(A)=\{a, b, \$\}$ are not disjoint: $\{a\} \cap\{a, b, \$\}=\{a\}$. Therefore the grammar is not LL(1).

- For B, similarly, First $(b B b)=\{b\}$ and First $(\epsilon)=\{\epsilon\}$ are disjoint.

But: First $(b B b)=\{b\}$ and Follow $(B)=\{b, \$\}$ are not disjoint: $\{b\} \cap\{b, \$\}=\{b\}$.

Question 15 (Left Corner)

Consider a CFG with the following productions: $S \rightarrow A|B U, A \rightarrow a A| a, B \rightarrow b B|b, U \rightarrow a U a| a a$.
Given an input word aa, give the Left Corner Recognition trace, i.e, the set of stack triples, for this input. We assume a Reduce operation with lookahead, i.e., Reduce with a new X-production is applied only if the topmost symbol Y of the stack of predicted categories stands in the relation $L C^{*}$ to X, i.e., $Y \stackrel{*}{\Rightarrow} X \ldots$

Solution:

	$\Gamma_{\text {compl }}$	$\Gamma_{t d}$	$\Gamma_{l h s}$	operation	
1.	aa	S	-		
2.	a	$\$ \mathrm{~S}$	A	reduce from 1., $A \rightarrow a$	
3.	a	$\mathrm{A} \$ \mathrm{~S}$	A	reduce from 1., $A \rightarrow a A$	
4.	Aa	S	-	move from 2.	
5.		$\$ \mathrm{~A} \$ \mathrm{~S}$	AA	reduce from 3., $A \rightarrow a$	
6.		$\mathrm{~A} \$ \mathrm{~A} \$ \mathrm{~S}$	AA	reduce from 3., $A \rightarrow a A$	failure
7.	a	$\$ \mathrm{~S}$	S	reduce from 4., $S \rightarrow A$	
8.	Sa	S	-	move from 7.	
9.	a	-	-	remove from 8.	failure
10.	A	$\mathrm{~A} \$ \mathrm{~S}$	A	move from 5.	
11.		$\$ \mathrm{~S}$	A	remove from 10.	
12.	A	S		move from 11.	
13.		$\$ \mathrm{~S}$	S	reduce from $12 ., S \rightarrow A$	
14.	S	S	-	move from 13.	
15.	-	-	-	remove from 14.	success

Question 16 (Left Corner chart parsing)

Consider the left corner chart parsing deduction rules from slide 15. Extend the algorithm with a rule for ε-productions in order to make it work for arbitrary CFGs.

Solution:
We need the following additional rule:
ε-Scan: $\overline{[A, i, 0]} A \rightarrow \varepsilon \in P, 1 \leq i \leq n+1$

Question 17 (Earley Parsing/recognition)

Consider the $C F G G_{3}=\langle N, T, P, S\rangle$ with $N=\{S, A, B, X\}, T=\{a, b\}, P=\{S \rightarrow A B A, S \rightarrow a X a$, $X \rightarrow b X b, X \rightarrow \epsilon, A \rightarrow a, A \rightarrow a A, B \rightarrow b b\}$
Give the chart resulting from an Earley-recognition of abba with prediction lookahead and completion lookahead:
Predict with lookahead: $\frac{[A \rightarrow \alpha \bullet B \beta, i, j]}{[B \rightarrow \bullet \gamma, j, j]} B \rightarrow \gamma \in P, w_{i+1} \in \operatorname{First}(\gamma)$ or $\epsilon \in \operatorname{First}(\gamma)$
Complete with lookahead: $\frac{[A \rightarrow \alpha \bullet B \beta, i, j],[B \rightarrow \gamma \bullet, j, k]}{[A \rightarrow \alpha B \bullet \beta, i, k]} w_{k+1} \in \operatorname{First}(\beta)$ or $\epsilon \in \operatorname{First}(\beta)$

Solution:

4	$\begin{aligned} & S \rightarrow A B A \bullet \\ & S \rightarrow a X a \bullet \end{aligned}$			$\begin{aligned} & A \rightarrow a \bullet A \\ & A \rightarrow a \bullet \end{aligned}$	
3	$\begin{aligned} & S \rightarrow a X \bullet a \\ & S \rightarrow A B \bullet A \end{aligned}$	$\begin{aligned} & B \rightarrow b b \bullet \\ & X \rightarrow b X b \bullet \end{aligned}$	$X \rightarrow b \bullet X b$	$\begin{aligned} & A \rightarrow \bullet a A \\ & A \rightarrow \bullet a \\ & X \rightarrow \bullet \end{aligned}$	
2		$\begin{aligned} & X \rightarrow b X \bullet b \\ & X \rightarrow b \bullet X b \\ & B \rightarrow b \bullet b \end{aligned}$	$\begin{aligned} & X \rightarrow \bullet \\ & X \rightarrow \bullet b X b \end{aligned}$		
1	$\begin{aligned} & S \rightarrow A \bullet B A \\ & A \rightarrow a \bullet \\ & A \rightarrow a \bullet A \\ & S \rightarrow a \bullet X a \end{aligned}$	$\begin{aligned} & B \rightarrow \bullet b b \\ & X \rightarrow \bullet \\ & X \rightarrow \bullet b X b \end{aligned}$			
0	$\begin{aligned} & A \rightarrow \bullet a \\ & A \rightarrow \bullet a A \\ & S \rightarrow \bullet a X a \\ & S \rightarrow \bullet A B A \end{aligned}$				
	0	1	2	3	4

Question 18 (LR parsing)

Consider the $C F G G_{4}=\langle N, T, P, S\rangle$ with $N=\{S, A, B, C\}, T=\{a, b, c\}$ and productions 1.S $\rightarrow A B C$, 2. $A \rightarrow a$, 3. $A \rightarrow a C$, 4.B $\rightarrow b, 5 . B \rightarrow b C, 6 . C \rightarrow c$. This grammar is not LR(1).

1. Construct the $L R(1)$ states and transitions with the canonical $L R$ algorithm.
2. From this, construct the $L R(1)$ parse table with multiple entries for some of the fields.

Solution:

2. Parse table:

	a	b	c	$\$$	A	B	C	S
0	s 1				2			3
1		r 2	s 11				10	
2		s 5				4		
3				acc				
4			s 7				6	
5			$\mathrm{~s} 8, \mathrm{r} 4$				9	
6				r 1				
7				r 6				
8			r 6					
9			r 5					
10		r3						
11		r 6						

Question 19 (Tomita)

The following table is the LR(1) parse table for the CFG with non-terminals $\{A, B, X\}$, terminals $\{a, b\}$, start symbol S and productions 1. $S \rightarrow A B A$, 2. $S \rightarrow a X a$, 3. $X \rightarrow b X b, 4 . X \rightarrow \epsilon, 5 . A \rightarrow a$, 6. $A \rightarrow a A$, 7. $B \rightarrow b b$
(The table has multiple entries for some of the fields.)

	a	b	$\$$	S	A	B	X
0	$s 1$			4	5		
1	$s 8, r 4$	$s 2, r 5$			16		9
2		$s 3, r 4$					10
3		$s 3, r 4$				11	
4			$a c c$				
5		$s 13$				6	
6	$s 14$				7		
7			$r 1$				
8	$s 8$	$r 5$			16		
9	$s 17$						
10		$s 18$					
11		$s 19$					
12	$r 7$						
13		$s 12$			15		
14	$s 14$		$r 5$				
15			$r 6$				
16		$r 6$					
17			$r 2$				
18	$r 3$						
19		$r 3$					

Give the trace of the Tomita-parse for abba (with all intermediate stack graphs and all analyses).

Solution:

Question 20 (PCFG)

Consider the PCFG G with non-terminals $\{S, A, B\}$, terminals $\{a, b\}$, start symbol S and productions
$\{\quad 0,5 \quad S \rightarrow A S$,
$0,3 \quad S \rightarrow S B$,
$0,2 \quad S \rightarrow A B$,
$1 \quad A \rightarrow a$,
$1 \quad B \rightarrow b \quad\}$
(The numbers preceding the productions are the corresponding probabilities.)

1. Give the inside chart for the input $w=a a a b b b$.
2. Give the viterbi chart of a probabilistic CYK parsing of $w=a a a b b b$.

Solution:

6	$(S, 0.027)$	$(S, 0.027)$	$(S, 0.018)$			$(B, 1)$
	5	$(S, 0.045)$	$(S, 0.06)$	$(S, 0.06)$		$(B, 1)$
	4	$(S, 0.005)$	$(S, 0.1)$	$(S, 0.2)$	$(B, 1)$	
1.	3			$(A, 1)$		
	2		$(A, 1)$			
1	$(A, 1)$					
	1	2	3	4	5	6

| 6 | $0.0045: S \rightarrow A S, 1$ | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | $0.015: S \rightarrow A S, 1$ | $0.009: S \rightarrow A S, 1$ | | | | | |
| 4 | $0.05: S \rightarrow A S, 1$ | $0.03: S \rightarrow A S, 1$ | $0.018: S \rightarrow S B, 3$ | | | | |
| 2. | | $0.1: S \rightarrow A S, 1$ | $0.06: S \rightarrow S B, 2$ | | | | |
| 3 | | $1: A \rightarrow a$ | $0.2: S \rightarrow A B, 1$ | | | | |
| 2 | | $1: A \rightarrow a$ | $1: B \rightarrow b$ | $1: B \rightarrow b$ | $1: B \rightarrow b$ | | |
| 1 | $1: A \rightarrow a$ | 2 | 3 | 4 | 5 | 6 | |

(For some fields of this chart, there are actually several possibilities leading to the same probability.)

Question 21 (PCFG parameter estimation with EM)

Consider the PCFG $G=\langle\{S, A, X\},\{a\}, P, S, p\rangle$ (see course slides) with P and p as follows:
0.3: $S \rightarrow A S$
0.6: $S \rightarrow A X$
0.1: $S \rightarrow a$ 1: $X \rightarrow S A$
1: $A \rightarrow a$

Assume that these probabilities are our starting probabilities for a parameter estimation using EM.
Assume that we have a training corpus consisting of 5 sentences, namely 3 sentences aa and 2 sentences $a a a$.

1. Give inside and outside values for the two sentences aa and aaa.
2. E-step: Compute the new counts $C_{a a}(A \rightarrow \alpha)$ and $C_{a a a}(A \rightarrow \alpha)$ and, based on these, the new frequency $f(A \rightarrow \alpha)$ for all $A \rightarrow \alpha \in P$.
3. M-step: Compute the new probabilities $\hat{p}(A \rightarrow \alpha)$ for all $A \rightarrow \alpha \in P$, based on the previous frequencies.

Solution:

1. Inside values α :

$a a:$			
j			
2	$\left(3 \cdot 10^{-2}, \mathrm{~S}\right)$,	$(1, \mathrm{~A})$,	
	$(0.1, \mathrm{X})$	$(0.1, \mathrm{~S})$	
1	$(1, \mathrm{~A})$,		
	$(0.1, \mathrm{~S})$		
	1	2	i

$a a a:$				
j				
3	$\left(6.9 \cdot 10^{-2}, \mathrm{~S}\right)$,	$\left(3 \cdot 10^{-2}, \mathrm{~S}\right)$,	$(1, \mathrm{~A})$,	
	$(0.03, \mathrm{X})$	$(0.1, \mathrm{X})$	$(0.1, \mathrm{~S})$	
2	$\left(3 \cdot 10^{-2}, \mathrm{~S}\right)$,	$(1, \mathrm{~A})$,		
	$(0.1, \mathrm{X})$	$(0.1, \mathrm{~S})$		
1	$(1, \mathrm{~A})$,			
	$(0.1, \mathrm{~S})$			
	1	2	3	

Outside values β (only values $\neq 0$ are given):

$a a$			
j			
2	$(1, \mathrm{~S})$	$(0.3, \mathrm{~S})$,	
		$(0.6, \mathrm{X})$	
1	$(0.03, \mathrm{~A})$		
	1	2	i

$a a a$ j					
3	$(1, \mathrm{~S})$	$(0.3, \mathrm{~S}),(0.6, \mathrm{X})$	$\left(9 \quad 10^{-2}, \mathrm{~S}\right)$, $(0.18, \mathrm{X})$, $\left(3 \cdot 10^{-2}, \mathrm{~A}\right)$		
2	$(0.03, \mathrm{~A})$	$(0.6, \mathrm{~S})$, $\left(8.99 \cdot 10^{-3}, \mathrm{~A}\right)$			
1	$\left(6.9 \cdot 10^{-2}, \mathrm{~A}\right)$		3	i	

2. $C_{a a}(S \rightarrow A S)=\frac{\beta_{S, 1,2} \alpha_{A, 1,1} \alpha_{S, 2,2} p(S \rightarrow A S)}{\alpha_{S, 1,2}}=\frac{1 \cdot 1 \cdot 0.1 \cdot 0.3}{0.03}=1$
$C_{a a}(S \rightarrow A X)=\frac{\beta_{S, 1,2} \alpha_{A, 1,1} \alpha_{X, 2,2} p(S \rightarrow A S)}{\alpha_{S, 1,2}}=0$
$C_{a a}(X \rightarrow S A)=0$
$C_{a a a}(S \rightarrow A S)=\frac{\beta_{S, 1,3} \alpha_{A, 1,1} \alpha_{S, 2,3} p(S \rightarrow A S)}{\alpha_{S, 1,3}}+\frac{\beta_{S, 1,2} \alpha_{A, 1,1} \alpha_{S, 2,2} p(S \rightarrow A S)}{\alpha_{S, 1,3}}+\frac{\beta_{S, 2,3} \alpha_{A, 2,2} \alpha_{S, 3,3} p(S \rightarrow A S)}{\alpha_{S, 1,3}}=$ $\frac{1 \cdot 1 \cdot 0.03 \cdot 0.3+0+0.3 \cdot 1 \cdot 0.1 \cdot 0.3}{0.069}=0.26$
$C_{a a a}(S \rightarrow A X)=\frac{\beta_{S, 1,3} \alpha_{A, 1,1} \alpha_{X, 2,3} p(S \rightarrow A X)}{\alpha_{S, 1,3}}+\frac{\beta_{S, 1,2} \alpha_{A, 1,1} \alpha_{X, 2,2} p(S \rightarrow A X)}{\alpha_{S, 1,3}}+\frac{\beta_{S, 2,3} \alpha_{A, 2,2} \alpha_{X, 3,3} p(S \rightarrow A X)}{\alpha_{S, 1,3}}=$ $\frac{1 \cdot 1 \cdot 0.1 \cdot 0.6+0+0}{0.069}=0.87$
$C_{a a a}(X \rightarrow S A)=\frac{\beta_{X, 2,3} \alpha_{S, 2,2} \alpha_{A, 3,3} p(X \rightarrow S A)}{\alpha_{S, 1,3}}=\frac{0.6 \cdot 0.1 \cdot 1}{0.069}=0.87$
$C_{a a}(S \rightarrow a)=\frac{\left(\beta_{S, 1,1}+\beta_{S, 2,2}\right) p(S \rightarrow a)}{\alpha_{S, 1,2}}=\frac{0.3 \cdot 0.1}{0.03}=1$
$C_{a a}(A \rightarrow a)=\frac{\left(\beta_{A, 1,1}+\beta_{A, 2,2}\right) p(A \rightarrow a)}{\alpha_{S, 1,2}}=\frac{0.03}{0.03}=1$
$C_{a a a}(S \rightarrow a)=\frac{\left(\beta_{S, 1,1}+\beta_{S, 2,2}+\beta_{S, 3,3}\right) p(S \rightarrow a)}{\alpha_{S, 1,3}}=\frac{0.69 \cdot 0.1}{0.069}=1$
$C_{a a a}(A \rightarrow a)=\frac{\left(\beta_{A, 1,1}+\beta_{A, 2,2}+\beta_{A, 3,3}\right) p(A \rightarrow a)}{\alpha_{S, 1,3}}=\frac{0.069+0.00899+0.003}{0.069}=1.17$
$f(S \rightarrow A S)=3 \cdot 1+2 \cdot 0.26=3.52$
$f(S \rightarrow A X)=3 \cdot 0+2 \cdot 0.87=1.74$
$f(X \rightarrow S A)=3 \cdot 0+2 \cdot 0.87=1.74$
$f(S \rightarrow a)=3 \cdot 1+2 \cdot 1=5$
$f(A \rightarrow a)=3 \cdot 1+2 \cdot 1.17=5.34$
3. $\hat{p}(S \rightarrow A S)=\frac{3.52}{3.52+1.74+5}=0.34$
$\hat{p}(S \rightarrow A X)=\frac{1.74}{3.52+1.74+5}=0.17$
$\hat{p}(S \rightarrow a)=\frac{2.99}{3.52+1.74+5}=0.29$
$\hat{p}(X \rightarrow S A)=\hat{p}(A \rightarrow a)=1$

Question 22 (A^{*} parsing)

Consider the PCFG given in the example on slides 14 (A^{*} slides) and the outside scores computed on the subsequent slides.
As input consider "red ugly camping car".

1. Show the weighted deductive CYK-Parsing with chart and agenda using this grammar and input with weights as described on slide 18 (incorporating the viterbi inside score and the SX outside estimate).
Write each weight as a pair (in, out) where in is the inside viterbi score and out the outside estimate (using $|\log (p)|$ instead of p).
Concerning the chart column, it is enough to list only new items in each row. (This is different from the agenda where items are not only added but also removed and reordering depending on weights takes place.)
2. The log used here is $\log _{10}$. Compute the probability of the best parse tree from the weight of the goal item.

Solution:

Chart	Agenda
	$(0.6,3.8):[\mathrm{A}, ~ 1, ~ 2],(0.7,3.8):[\mathrm{A}, 0,1],(0.7,4.1):[\mathrm{N}, 2,3],(1,3.8):[\mathrm{N}, 0,1]$,
	$(1,4.1):[\mathrm{N}, 3,4]$
$(0.6,3.8):[\mathrm{A}, ~ 1, ~ 2]$	$(0.7,3.8):[\mathrm{A}, ~ 0, ~ 1],(0.7,4.1):[\mathrm{N}, 2,3],(1,3.8):[\mathrm{N}, 0,1],(1,4.1):[\mathrm{N}, 3,4]$
$(0.7,3.8):[\mathrm{A}, 0,1]$	$(0.7,4.1):[\mathrm{N}, 2,3],(1,3.8):[\mathrm{N}, 0,1],(1,4.1):[\mathrm{N}, 3,4]$
$(0.7,4.1):[\mathrm{N}, 2,3]$	$(1,3.8):[\mathrm{N}, 0,1],(0.6+0.7+0.7,2.9):[\mathrm{N}, 1,3],(1,4.1):[\mathrm{N}, 3,4]$
$(1,3.8):[\mathrm{N}, ~ 0,1]$	$(2,2.9):[\mathrm{N}, 1,3],(1,4.1):[\mathrm{N}, 3,4]$
$(2,2.9):[\mathrm{N}, 1,3]$	$(1,4.1):[\mathrm{N}, 3,4],(\min \{0.7+2+0.7,1+2+1\}, 1.7):[\mathrm{N}, 0,3]$
$(1,4.1):[\mathrm{N}, 3,4]$	$(3.4,1.7):[\mathrm{N}, 0,3],(2+1+1,1.2):[\mathrm{N}, 1,4],(0.7+1+1,2.9):[\mathrm{N}, 2,4]$
$(3.4,1.7):[\mathrm{N}, 0,3]$	$(4,1.2):[\mathrm{N}, 1,4],(3.4+1+1,0):[\mathrm{N}, 0,4],(2.7,2.9):[\mathrm{N}, 2,4]$
$(4,1.2):[\mathrm{N}, 1,4]$	$(5.4,0):[\mathrm{N}, 0,4],(2.7,2.9):[\mathrm{N}, 2,4]$

The last operation does not add to the agenda because all the new items one could possibly build (combining $[\mathrm{N}, 1,4]$ with $[\mathrm{A}, 0,1]$ or $[\mathrm{N}, 0,1]$) already exist in the agenda and the weights of the new items are higher or equal to the one of the already existing.

Algorithm stops because goal item [$\mathrm{N}, 0,4$] has been reached as top agenda item.
2. The inside score in the weight of the goal item $[\mathrm{N}, 0,4]$ is 5.4 . The probability of the best parse tree is therefore $10^{-5.4}=\frac{1}{10^{5 \cdot 4}}=3.98 \cdot 10^{-6} \approx 4 \cdot 10^{-6}$.

Question 23 (A* parsing) Consider the $P C F G G=\langle N, T, P, S, p\rangle$ with $N=\{S, A, B\}, T=\{a, b\}$ and

$$
P=\begin{array}{rlll}
\{0,3 & S & \rightarrow A B \\
0,7 & S & \rightarrow & B A \\
0,1 & A & \rightarrow & A S \\
0,9 & A & \rightarrow & a \\
0,6 & B & \rightarrow & B S \\
0,4 & B & \rightarrow & b\} .
\end{array}
$$

(The numbers preceding the rules are the corresponding probabilities.)
Compute the estimates of the inside viterbi scores in (X, l) for non-terminals $X \in N$ and lengths $1 \leq l \leq 4$.
Use the following values for the weights:

$$
\begin{array}{lll}
|\log (0,1)|=1,00 & |\log (0,3)|=0,52 & |\log (0,4)|=0,40 \\
|\log (0,6)|=0,22 & |\log (0,7)|=0,15 & |\log (0,9)|=0,05
\end{array}
$$

Solution:

S	∞	0,6	∞	1,42	
A	0,05	∞	1,65	∞	
B	0,40	∞	1,22	∞	
	1	2	3	4	l

Question 24 (A* parsing)

Consider the PCFG G with $N=\{S, A\}, T=\{a\}$, start symbol S and productions
$0.5 S \rightarrow S S$
$0.125 S \rightarrow A S \quad 0.25 \quad S \rightarrow S A$
$0.125 \quad S \rightarrow a$
$1 \quad A \rightarrow a$

For weights, use $\left|\log _{2}(p)\right|$.

1. Compute the inside viterbi estimates for lengths $1 \leq l \leq 4$ and the outside $S X$ estimates for length $n=4$.
2. Use these values for an A^{*} parsing of aaaa.

Solution:

1. Inside estimates:

S	3	5	7	9	
A	0	∞	∞	∞	
	1	2	3	4	l

Outside SX estimates:

- $l=4$:
$\operatorname{out}(A, 0,4,0)=\infty, \operatorname{out}(N, 0,4,0)=0$
- $l=3$:
out $(A, 0,3,1)=3+3=6$
out $(A, 1,3,0)=3+2=5$
$\operatorname{out}(S, 0,3,1)=\min \{4,2\}=2$
$\operatorname{out}(S, 1,3,0)=\min \{4,3\}=3$
- $l=2$:
$\operatorname{out}(A, 0,2,2)=\min \{3+3+2,3+5+0\}=8$
$\operatorname{out}(A, 1,2,1)=\min \{2+3+2,3+3+3\}=7$
$\operatorname{out}(A, 2,2,0)=\min \{2+3+3,2+5+0\}=7$
$\operatorname{out}(S, 0,2,2)=\min \{1+3+2,1+5+0,2+0+2\}=4$
$\operatorname{out}(S, 1,2,1)=\min \{2+0+3,3+0+2,1+3+2,1+3+3\}=5$
$\operatorname{out}(S, 2,2,0)=\min \{1+3+3,1+5+0,3+0+3\}=6$
- $l=1$:
$\operatorname{out}(A, 0,1,3)=\min \{3+3+4,3+5+2,3+7+0\}=10$
$\operatorname{out}(A, 1,1,2)=\min \{3+3+5,3+5+3,2+3+4\}=9$
$\operatorname{out}(A, 2,1,1)=\min \{3+3+4,2+3+5,2+5+2\}=9$
$\operatorname{out}(A, 3,1,0)=\min \{2+3+6,2+5+3,2+7+0\}=9$
$\operatorname{out}(S, 0,1,3)=\min \{1+3+4,1+5+2,1+7+0,2+0+4\}=6$
$\operatorname{out}(S, 1,1,2)=\min \{1+3+5,1+5+3,1+3+4,2+0+5,3+0+4\}=7$
$\operatorname{out}(S, 2,1,1)=\min \{1+3+5,1+3+6,1+5+2,2+0+6,3+0+5\}=8$
$\operatorname{out}(S, 3,1,0)=\min \{1+3+6,1+5+3,1+7+0,3+0+6\}=8$

2. Parsing of aaaa:

Chart	Agenda
	$(0,9):[\mathrm{A}, ~ 1, ~ 2],(0,9):[\mathrm{A}, 2,3],(0,9):[\mathrm{A}, 3,4],(3,6):[\mathrm{S}, 0,1]$,
	$(0,10):[\mathrm{A}, 0,1],(3,7):[\mathrm{S}, 1,2],(3,8):[\mathrm{S}, 2,3],(3,8):[\mathrm{S}, 3,4]$
$(0,9):[\mathrm{A}, 1,2]$	$(0,9):[\mathrm{A}, 2,3],(0,9):[\mathrm{A}, 3,4],(3,6):[\mathrm{S}, 0,1]$,
	$(0,10):[\mathrm{A}, 0,1],(3,7):[\mathrm{S}, 1,2],(3,8):[\mathrm{S}, 2,3],(3,8):[\mathrm{S}, 3,4]$
$(0,9):[\mathrm{A}, 2,3]$	$(0,9):[\mathrm{A}, 3,4],(3,6):[\mathrm{S}, 0,1]$,
	$(0,10):[\mathrm{A}, 0,1],(3,7):[\mathrm{S}, 1,2],(3,8):[\mathrm{S}, 2,3],(3,8):[\mathrm{S}, 3,4]$
$(0,9):[\mathrm{A}, 3,4]$	$(3,6):[\mathrm{S}, 0,1]$,
	$(0,10):[\mathrm{A}, 0,1],(3,7):[\mathrm{S}, 1,2],(3,8):[\mathrm{S}, 2,3],(3,8):[\mathrm{S}, 3,4]$
$(3,6):[\mathrm{S}, 0,1]$	$(3+0+2,4):[\mathrm{S}, 0,2],(0,10):[\mathrm{A}, 0,1],(3,7):[\mathrm{S}, 1,2],(3,8):[\mathrm{S}, 2,3]$,
	$(3,8):[\mathrm{S}, 3,4]$
$(5,4):[\mathrm{S}, 0,2]$	$(5+0+2,2):[\mathrm{S}, 0,3],(0,10):[\mathrm{A}, 0,1],(3,7):[\mathrm{S}, 1,2],(3,8):[\mathrm{S}, 2,3]$,
	$(3,8):[\mathrm{S}, 3,4]$,
$(7,2):[\mathrm{S}, 0,3]$	$(7+0+2,0):[\mathrm{S}, 0,4],(0,10):[\mathrm{A}, 0,1],(3,7):[\mathrm{S}, 1,2],(3,8):[\mathrm{S}, 2,3]$,
	$(3,8):[\mathrm{S}, 3,4]$,

Parser stops since top agenda item is a goal item.

