
Parsing
Earley Parsing

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Winter 2017/18

1 / 39

Table of contents

1 Idea

2 Algorithm

3 Tabulation

4 Parsing

5 Lookaheads

2 / 39

Idea (1)

Goal: overcome problems with pure TD/BU approaches.
Earley’s algorithm can be seen as a

bo�om-up parser with top-down control, i.e., a bo�om-up pars-
ing that does only reductions that can be top-down predicted
from S, or a
top-down parser with bo�om-up recognition

3 / 39

Idea (2)

At each time of parsing, one production A→ X1 . . .Xk is considered
such that

some part X1 . . .Xi has already been bo�om-up recognized
(completed)
while some part Xi+1 . . .Xk has been top-down predicted.

As in the le�-corner chart parser, this situation can be characterized
by a do�ed production (sometimes called Earley item)
A→ X1 . . .Xi • Xi+1 . . .Xk .

Do�ed productions are called active items. Productions of the form
A→ α• are called completed items.

4 / 39

Idea (3)

�e Earley parser simulates a top-down le�-to-right depth-�rst
traversal of the parse tree while moving the dot such that for each
node

�rst, the dot is to its le� (the node is predicted),
then the dot traverses the tree below,
then the dot is to its right (the subtree below the node is com-
pleted)

Each state of the parser can be characterized by a set of do�ed
productions A→ X1 . . .Xi • Xi+1 . . .Xk . For each of these, one needs
to keep track of the input part spanned by the completed part of the
rhs, i.e., by X1 . . .Xi.

5 / 39

Algorithm (1)

�e items describing partial results of the parser contain a do�ed
production and the start and end index of the completed part of the
rhs:

Item form: [A→ α • β, i, j] with A→ αβ ∈ P, 0 ≤ i ≤ j ≤ n.

Parsing starts with predicting all S-productions:

Axioms:
[S → •α, 0, 0] S → α ∈ P

6 / 39

Algorithm (2)

If the dot of an item is followed by a non-terminal symbol B, a new
B-production can be predicted. �e completed part of the new item
(still empty) starts at the index where the completed part of the �rst
item ends.

Predict: [A→ α • Bβ, i, j]
[B→ •γ, j, j] B→ γ ∈ P

If the dot of an item is followed by a terminal symbol a that is the
next input symbol, then the dot can be moved over this terminal (the
terminal is scanned). �e end position of the completed part is
incremented.

Scan: [A→ α • aβ, i, j]
[A→ αa • β, i, j + 1] wj+1 = a

7 / 39

Algorithm (3)

If the dot of an item is followed by a non-terminal symbol B and if
there is a second item with a do�ed B-production and a fully
completed rhs and if, furthermore, the completed part of the second
item starts at the position where the completed part of the �rst ends,
then the dot in the �rst can be moved over the B while changing the
end index to the end index of the completed B-production.

Complete: [A→ α • Bβ, i, j], [B→ γ•, j, k]

[A→ αB • β, i, k]

�e parser is successfull if a completed S-production spanning the
entire input can be deduced:

Goal items: [S → α•, 0, n] for some S → α ∈ P .

8 / 39

Algorithm (4)

Note that

this algorithm can deal with ε-productions;

loops and le�-recursions are no problem since an active item is
generated only once;

the algorithm works for any type of CFG.

9 / 39

Algorithm (5)

Example
Productions: S → aB | bA,A→ aS | bAA | a,B→ bS | aBB | b.
w = abab.

Set of deduced items:
1. [S → •aB, 0, 0] axiom
2. [S → •bA, 0, 0] axiom
3. [S → a • B, 0, 1] scan with 1.
4. [B→ •bS, 1, 1] predict with 3.
5. [B→ •b, 1, 1] predict with 3.
6. [B→ •aBB, 1, 1] predict with 3.
7. [B→ b • S, 1, 2] scan with 4.
8. [B→ b•, 1, 2] scan with 5.
9. [S → aB•, 0, 2] complete with 3. and 8.

10 / 39

Algorithm (6)

Example continued
10. [S → •aB, 2, 2] predict with 7.
11. [S → •bA, 2, 2] predict with 7.
12. [S → a • B, 2, 3] scan with 10.
13. [B→ •bS, 3, 3] predict with 12.
14. [B→ •b, 3, 3] predict with 12.
15. [B→ •aBB, 3, 3] predict with 12.
16. [B→ b • S, 3, 4] scan with 13.
17. [B→ b•, 3, 4] scan with 14.
18. [S → •aB, 4, 4] predict with 16.
19. [S → •bA, 4, 4] predict with 16.
20. [S → aB•, 2, 4] complete with 12. and 17.
21. [B→ bS•, 1, 4] complete with 7. and 20.
22. [S → aB•, 0, 4] complete with 3. and 21.

11 / 39

Algorithm (7)

Soundness and completeness:
�e following holds:

[A→ α • β, i, j]

i�

S ∗⇒ w1 . . .wiAγ ⇒ w1 . . .wiαβγ
∗⇒ w1 . . .wiwi+1 . . .wjβγ

for some γ ∈ (N ∪ T∗).

�e algorithm is in particular pre�x-valid: if there is an item with end
position j, then there is a word in the language with pre�x w1 . . .wj .

12 / 39

Algorithm (8)

In addition, one can use passive items [A, i, j] with A ∈ N ,
0 ≤ i ≤ j ≤ n.
�en, we need an additional convert rule, that converts a completed
active item into a passive one:

Convert: [B→ γ•, j, k]

[B, j, k]

�e goal item is then [S, 0, n].

13 / 39

Algorithm (9)

�e Complete rule can use passive items now:

Complete: [A→ α • Bβ, i, j], [B, j, k]

[A→ αB • β, i, k]

�e advantage is that we obtain a higher degree of factorization: A
B-subtree might have di�erent analyses. Complete can use this B
category now independent from the concrete analyses, i.e., there is
only one single application of Complete for all of them.

14 / 39

Tabulation (1)

We can tabulate the do�ed productions depending on the indices of
the covered input.

I.e., we adopt a (n + 1)× (n + 1)-chart C with
A→ α • β ∈ Ci,j i� [A→ α • β, i, j].

�e chart is initialized with
C0,0 := {S → •α | S → α ∈ P} and
Ci,j = ∅ for all i, j ∈ [0..n] with i 6= 0 or j 6= 0.
It can then be �lled in the following way:

15 / 39

Tabulation (2)

Let us consider the version without passive items.

�e chart is �lled row by row:
for every end-of-span index k:

we �rst compute all applications of predict and complete that
yield new items with end-of-span index k;
then, we compute all applications of scan which gives items
with end-of-span index k + 1.

16 / 39

Tabulation (3)

for all k ∈ [0..n]:
do until chart does not change any more:

for all j ∈ [0..k] and all p ∈ Cj,k:
if p = A→ α • Bβ
then add B→ •γ to Ck,k for all B→ γ ∈ P

predict
else if p = B→ γ•
then for all i ∈ [0..j]:

if there is a A→ α • Bβ ∈ Ci,j
then add A→ αB • β to Ci,k complete

for all j ∈ [0..k] and for all p ∈ Cj,k:
if p = A→ α • wk+1β
then add A→ αwk+1 • β to Cj,k+1 scan

17 / 39

Tabulation (4)

Note that predict and complete do not increment the end of the
spanned input, i.e., they add only elements to the �elds C...,k (the k-th
row of the chart).
Scan however adds elements to the C...,k+1 (the k + 1-th row).

�is is why �rst, all possible predict and complete operations are
performed to generate new chart entries in the k-th row. �en, scan is
applied and one can move on to the next row k + 1.

Since predict and complete are applied as o�en as possible,
ε-productions and le� recursion are no problem for this algorithm.

18 / 39

Tabulation (5)

Implementation:
Besides the chart, for every k, we keep an agenda Ak of those items
from the chart that still need to be processed.
Initially, for k = 0, this agenda contains all S → •α, the other agendas
are empty.
We process the items in the agendas from k = 0 to k = n. For each k,
we stop once the k-agenda is empty.

19 / 39

Tabulation (6)

Items x of the form A→ α • Bβ trigger a predict operation.
�e newly created items, if they are not yet in the chart, are
added to chart and k-agenda.
In addition, if ε-productions are allowed, x also triggers a
complete where the chart is searched for a completed B-item
ranging from k to k. �e new items (if not in the chart yet) are
added to the k-agenda and the chart.
x is removed from the k-agenda.

20 / 39

Tabulation (8)

Items x of the form B→ γ• trigger a complete operation where
the chart is searched for corresponding items A→ α • Bβ.
�e newly created items are added to the chart and the k-
agenda (if they are not yet in the chart), x is removed from
the k-agenda.
Items x of the form A→ α • aβ trigger a scan operation.
�e newly created items (if not yet in the chart) are added to
the chart and the k + 1-agenda, x is removed from the k-agenda.

21 / 39

Tabulation (9)

Example without ε-productions
Productions S → ASB | c,A→ a,B→ b, input w = acb

A0 = {[S → •ASB, 0, 0], [S → •c, 0, 0]}
2
1
0 S → •ASB

S → •c
0 1 2 3

S → •ASB triggers a predict:

22 / 39

Tabulation (10)

Example continued
A0 = {[S → •c, 0, 0], [A→ •a, 0, 0]}
2
1
0 S → •ASB

S → •c
A→ •a
0 1 2 3

S → •c triggers a scan that fails, A→ •a triggers a successful scan:

23 / 39

Tabulation (11)

Example continued
A0 = {},A1 = {[A→ a•, 0, 1]}
2
1 A→ a•
0 S → •ASB

S → •c
A→ •a
0 1 2 3

A→ a• triggers a complete:

24 / 39

Tabulation (12)

Example continued
A0 = {},A1 = {[S → A • SB, 0, 1]}
2
1 S → A • SB

A→ a•
0 S → •ASB

S → •c
A→ •a
0 1 2 3

S → A • SB triggers a predict:

25 / 39

Tabulation (13)

Example continued
A0 = {},A1 = {[S → •ASB, 1, 1], [S → •c, 1, 1]}
2
1 S → A • SB S → •ASB

A→ a• S → •c
0 S → •ASB

S → •c
A→ •a
0 1 2 3

S → •ASB triggers a predict:

26 / 39

Tabulation (14)

Example continued
A0 = {},A1 = {[S → •c, 1, 1], [A→ •a, 1, 1]}
2
1 S → A • SB S → •ASB

A→ a• S → •c
A→ •a

0 S → •ASB
S → •c
A→ •a
0 1 2 3

S → •c triggers a scan:

27 / 39

Tabulation (15)

Example continued
A0 = {},A1 = {[A→ •a, 1, 1]},A2 = {[S → c•, 1, 2]}
2 S → c•
1 S → A • SB S → •ASB

A→ a• S → •c
A→ •a

0 S → •ASB
S → •c
A→ •a
0 1 2 3

A→ •a triggers a scan that fails, then S → c• triggers a complete:

28 / 39

Tabulation (16)

Example continued
A0 = {},A1 = {},A2 = {[S → AS • B, 0, 2]}
2 S → AS • B S → c•
1 S → A • SB S → •ASB

A→ a• S → •c
A→ •a

0 S → •ASB
S → •c
A→ •a
0 1 2 3

S → AS • B triggers the prediction of [B→ •b, 2, 2], which triggers a
successful scan:

29 / 39

Tabulation (17)

Example continued
A0 = {},A1 = {},A2 = {},A3 = {[B→ b•, 2, 3]}
3 B→ b•
2 S → AS • B S → c• B→ •b
1 S → A • SB S → •ASB

A→ a• S → •c
A→ •a

0 S → •ASB
S → •c
A→ •a
0 1 2 3

B→ b• triggers a complete which leads to a goal item:

30 / 39

Tabulation (18)

Example continued
A0 = {},A1 = {},A2 = {},A3 = {}
3 S → ASB• B→ b•
2 S → AS • B S → c• B→ •b
1 S → A • SB S → •ASB

A→ a• S → •c
A→ •a

0 S → •ASB
S → •c
A→ •a
0 1 2 3

31 / 39

Tabulation (19)

Example with ε-productions
Productions S → ABB,A→ a,B→ ε, input w = a

1 A→ a•
S → A • BB B→ •
S → AB • B
S → ABB•

0 S → •ABB
A→ •a
0 1

32 / 39

Tabulation (20)

Overview: TD/BU and mixed approaches:
TD/BU item form chart parsing

Top-down TD [Γ, i] no
Bo�om-up BU [Γ, i] no
CYK BU [A, i, l] yes
Le� corner mixed [Γcompl,Γtd ,Γlhs] no

[A→ α • β, i, l] yes
Earley mixed [A→ α • β, i, j] yes

33 / 39

Parsing (1)

So far, we have a recognizer.

One way to extend it to a parser it to read o� the parse tree in a
top-down way from the chart.
Alternatively, in every completion step, we can record in the
chart the way the new item can be obtained by adding pointers
to its pair of antecedents. �en, for constructing the parse tree,
we only need to follow the pointers.

34 / 39

Parsing (2)

First possibility (initial call parse-tree(S,0,n)):

parse-tree(X,i,j)
trees := ∅;
if X = wj and j = i + 1 then trees := {wj}
else for all X → X1 . . .Xr• ∈ Ci,j

for all i1, . . . , ir, i ≤ i1 ≤ · · · ≤ ir−1 ≤ ir = j
and all t1, . . . tr with
t1 ∈ parse-tree(X1, i, i1) and
tl ∈ parse-tree (Xl, il−1, il) for 1 < l ≤ r:

trees := trees ∪{X(t1, . . . , tr)};
output trees

35 / 39

Parsing (3)

Second possibility:

We equip items with an additional set of pairs of pointers to
other items in the item set.

Whenever an item [A→ αA • β, i, k] is obtained in a complete
operation from [A → α • Aβ, i, j] and [A → γ•, j, k], we add a
pair of pointers to the two antecedent items to the pointer set
of the consequent item.

Obviously, items might have more than one element in their set
if the grammar is ambiguous.

36 / 39

Parsing (4)

Example: Backpointers
Productions S → AB,A→ Ac | a,B→ cB | b, input w = acb.
Item set (with list of pointer pairs):
1 [S → •AB, 0, 0] 2 [A→ •Ac, 0, 0] 3 [A→ •a, 0, 0]
4 [A→ a•, 0, 1]
5 [A→ A • c, 0, 1], {〈2, 4〉} 6 [S → A • B, 0, 1], {〈1, 4〉}
7 [B→ •cB, 1, 1] 8 [B→ •b, 1, 1]
9 [A→ Ac•, 0, 2] 10 [B→ c • B, 1, 2]
11 [A→ A • c, 0, 2], {〈2, 9〉} 12 [S → A • B, 0, 2], {〈1, 9〉}
13 [B→ •cB, 2, 2] 14 [B→ •b, 2, 2] 15 [B→ b•, 2, 3]
16 [B→ cB•, 1, 3], {〈10, 15〉}
17 [S → AB•, 0, 3], {〈6, 16〉, 〈12, 15〉}

37 / 39

Lookaheads

Two kinds of lookaheads: a prediction lookahead and a reduction
lookahead:

Predict with lookahead:
[A→ α • Bβ, i, j]

[B→ •γ, j, j] B→ γ ∈ P,wj+1 ∈ First(γ) or ε ∈ First(γ)

Complete with lookahead:
[A→ α • Bβ, i, j], [B→ γ•, j, k]

[A→ αB • β, i, k]
wk+1 ∈ First(β)
or ε ∈ First(β) and wk+1 ∈ Follow(A)

Instead of precomputing the Follow sets, one can compute the actual
follows while predicting.

38 / 39

Conclusion

Earley is a top-down restricted bo�om-up parser.
�e three operations to compute new partial parsing results are
predict, scan and complete.
Earley is a chart parser.
Earley can parse all CFGs.

39 / 39

	Idea
	Algorithm
	Tabulation
	Parsing
	Lookaheads

