Parsing
Cocke Younger Kasami (CYK)

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Winter 2017/18
Introduction

The CYK parser is

- a **bottom-up** parser: we start with the terminals in the input string and subsequently compute recognized parse trees by going from already recognized rhs of productions to the non-terminal on the lefthand side.

- a **non-directional** parser: the checking for recognized components of a rhs in order to complete a lhs is not ordered; in particular, we cannot complete only parts of a rhs, everything in the rhs must be recognized in order to complete the lefthand category.

Independently proposed by Cocke, Kasami and Younger in the 60s.

Cocke and Schwartz (1970); Grune and Jacobs (2008); Hopcroft and Ullman (1979, 1994); Kasami (1965); Younger (1967)
We store the results in a \((n + 1) \times (n + 1)\) chart (table) \(C\) such that \(A \in C_{i,l}\) iff \(A \Rightarrow^* w_i \ldots w_{i+l-1}\).

In other words,

- \(i\) is the index of the first terminal in the relevant substring of \(w\); \(i\) ranges from 1 to \(n + 1\) (the latter for an empty word following \(w_n\))
- \(l\) is the length of the substring; \(l\) ranges from 0 to \(n\).

All fields in the chart are initialized with \(\emptyset\).
The general recognizer (2)

General CYK recognizer (for arbitrary CFGs):

\[
C_{i,1} := \{w_i\} \quad \text{for all } 1 \leq i \leq n \quad \text{scan}
\]

\[
C_{i,0} := \{A \mid A \rightarrow \epsilon \in P\} \quad \text{for all } i \in [1..n+1] \quad \epsilon\text{-productions}
\]

for all \(i \in [0..n] : \)

\[
\text{for all } i_1 \in [1..n+1]: \]

repeat until chart does not change any more:

\[
\text{for every } A \rightarrow A_1 \ldots A_k : \]

if there are \(l_1, \ldots, l_k \in [0..n] \) such that

\[
l_1 + \ldots + l_k = l \quad \text{and}
\]

\[
A_j \in C_{i,j,l} \quad \text{with } i_j = i_1 + l_1 \ldots + l_{j-1},
\]

then \(C_{i_1,l} := C_{i_1,l} \cup \{A\} \quad \text{complete} \)
The general recognizer (3)

Example

\[S \rightarrow ABC, \ A \rightarrow aA \mid \epsilon, \ B \rightarrow bB \mid \epsilon, \ C \rightarrow c. \]
\[w = aabbbc. \]

<table>
<thead>
<tr>
<th>l</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>A,B</td>
<td>A,B</td>
<td>A,B</td>
<td>A,B</td>
<td>A,B</td>
<td>A,B</td>
<td>A,B</td>
<td>i</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The general recognizer (4)

Parsing schema for CYK:
Items have three elements:

- $X \in N \cup T$: the nonterminal/terminal that spans a substring w_i, \ldots, w_j of w;
- the index i of the first terminal in the subsequence;
- the length $l = j - i$ of the subsequence.

Item form: $[X, i, l]$ with $X \in N \cup T$, $i \in [1..n + 1]$, $l \in [0..n]$.
The general recognizer (5)

Goal item: \([S, 1, n]\).

Deduction rules:

Scan: \(\text{[a, i, 1]} \quad w_i = a\)

\(\epsilon\)-productions: \(\text{[A, i, 0]} \quad A \rightarrow \epsilon \in P, \ i \in [1..n + 1]\)

Complete: \(\text{[A_1, i_1, l_1]}, \ldots, \text{[A_k, i_k, l_k]} \quad A \rightarrow A_1 \ldots A_k \in P, \ l = l_1 + \cdots + l_k, \ i_j = i_1 + l_1 \cdots + l_{j-1}\)
Tabulation avoids problems with loops: nothing needs to be computed more than once.

In each complete step, we have to check for all l_1, \ldots, l_k. This is costly.

Note, however, that we create a new chart entry (new item) only for combinations of already recognized parse trees. (No blind prediction as in Unger’s parser.)

With unary rules and ϵ-productions, an entry in field $C_{i,l}$ can be reused to compute a new entry in $C_{i,l}$. This is why the repeat until chart does not change any more loop is necessary.
A CFG is in Chomsky Normal Form iff all productions are either of the form $A \rightarrow a$ or $A \rightarrow B C$. If the grammar has this form,

- we need to check only l_1, l_2 in a complete step, and
- we can be sure that to compute an entry in field $C_{i,l}$, we do not use another entry from field $C_{i,l}$. Consequently, we do not need the `repeat until chart does not change any more` loop.
The chart C is now an $n \times n$-chart.

$$C_{i,1} := \{A | A \to w_i \in P\}$$

scan

for all $l \in [1..n]$:

for all $i \in [1..n]$:

for every $A \to B \in C$:

if there is a $l_1 \in [1..l-1]$ such that

$B \in C_{i,l_1}$ and $C \in C_{i+l_1,l-l_1}$,

then $C_{i,l} := C_{i,l} \cup \{A\}$

complete
The CNF recognizer (3)

Parsing schema for CNF CYK:

Goal item: \([S, 1, n]\)

Deduction rules:

Scan: \([A, i, 1] \rightarrow w_i \in P\)

Complete: \([B, i, l_1], [C, i + l_1, l_2] \rightarrow A \rightarrow BC \in P\)
The CNF recognizer (4)

Example

\[
S \rightarrow C_a C_b \mid C_a S_B, S_B \rightarrow SC_b, C_a \rightarrow a, C_b \rightarrow b. \text{ (From } S \rightarrow aSb \mid ab \text{ with transformation into CNF.)}
\]

\[w = aaabbb.\]

<table>
<thead>
<tr>
<th>[l]</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>[i]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>S_B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>S_B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>C_a</td>
<td>C_a</td>
<td>C_a</td>
<td>C_b</td>
<td>C_b</td>
<td>C_b</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>i</td>
</tr>
</tbody>
</table>

The CNF recognizer (5)

Time complexity: How many different instances of scan and complete are possible?

Scan: \[
[A, i, 1] \quad A \rightarrow w_i \in P \quad c_1 n
\]

Complete: \[
\frac{[B, i, l_1], [C, i + l_1, l_2]}{[A, i, l_1 + l_2]} \quad A \rightarrow BC \in P \quad c_2 n^3
\]

Consequently, the time complexity of CYK for CNF is \(O(n^3)\).

The space complexity of CYK is \(O(n^2)\).
Control structures: there are two possible orders in which the chart can be filled:

1. **off-line order**: fill first row 1, then row 2 etc.:
 - for all \(l \in [1..n] \): (length)
 - for all \(i \in [1..n-l+1] \): (start position)
 - compute \(C_{i,l} \)

2. **on-line order**: fill one diagonal after the other, starting with 1, 1 and proceeding from \(k, 1 \) to \(1, k \):
 - for all \(k \in [1..n] \): (end position)
 - for all \(l \in [1..k] \): (length)
 - compute \(C_{k-l+1,l} \)
Soundness of the algorithm: If $[A, i, l]$, then $A \Rightarrow^* w_i \ldots w_{i+l-1}$.
Proof via induction over deduction rules.

Completeness of the algorithm: If $A \Rightarrow^* w_i \ldots w_{i+l-1}$, then $[A, i, l]$.
Proof via induction over l.
We know that for every CFG G with $\epsilon \notin L(G)$ we can

- eliminate ϵ-productions,
- eliminate unary productions,
- eliminate useless symbols,
- transform into CNF,

and the resulting CFG G' is such that $L(G) = L(G')$. Therefore, for every CFG, we can use the CNF recognizer after transformation.

How can we obtain a parser?
We need to do two things:

- turn the CNF recognizer into a parser, and
- if the original grammar was not in CNF, retrieve the original syntax from the CNF syntax.
To turn the CNF recognizer into a parser, we record not only non-terminal categories but whole productions with the positions and lengths of the rhs symbols in the chart (i.e., with backpointers):

\[
C_{i,1} := \{A \rightarrow w_i | A \rightarrow w_i \in P\}
\]

for all \(l \in [1..n] \):

for all \(i \in [1..n] \):

for every \(A \rightarrow B C \):

if there is a \(l_1 \in [1..l-1] \) such that

\(B \in C_{i,l_1} \) and \(C \in C_{i+l_1,l-l_1} \),

then \(C_{i,l} := C_{i,l} \cup \{A \rightarrow [B, i, l_1][C, i + l_1, l - l_1]\} \)

We can then obtain a parse tree by traversing the productions from left to right, starting with every \(S \)-production in \(C_{1,n} \).
Example

\[S \rightarrow C_a C_b \mid C_a S_B, \quad S_B \rightarrow SC_b, \quad C_a \rightarrow a, \quad C_b \rightarrow b, \quad w = aaabbb. \]
(We write \(A_{i,l} \) for \([A, i, l] \).)

<table>
<thead>
<tr>
<th>(S \rightarrow)</th>
<th>(C_{a1,1} S_{B2,5})</th>
<th>(S_B \rightarrow)</th>
<th>(S_{2,4} C_{b6,1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S \rightarrow)</td>
<td>(C_{a2,1} S_{B3,3})</td>
<td>(S_B \rightarrow)</td>
<td>(S_{3,2} C_{b5,1})</td>
</tr>
<tr>
<td>(S \rightarrow)</td>
<td>(C_{a3,1} C_{b4,1})</td>
<td>(C_a \rightarrow a)</td>
<td>(C_a \rightarrow a)</td>
</tr>
</tbody>
</table>

\[C_a \rightarrow a \]
\[C_a \rightarrow a \]
\[C_a \rightarrow a \]
\[C_b \rightarrow b \]
\[C_b \rightarrow b \]
\[C_b \rightarrow b \]
From the CNF parse tree to the original parse tree:
First, we undo the CNF transformation:

- replace every $C_a \rightarrow a$ in the chart with a and replace every occurrence of C_a in a production with a.

- For all $l, i \in [1..n]$: If $A \rightarrow \alpha D_{iD,lD} \in C_{i,l}$ such that D is a new symbol introduced in the CNF transformation and $D \rightarrow \beta \in C_{iD,lD}$, then replace $A \rightarrow \alpha D_{iD,lD}$ with $A \rightarrow \alpha\beta$ in $C_{i,l}$.

- Finally remove all $D \rightarrow \gamma$ with D being a new symbol introduced in the CNF transformation from the chart.
Example

$S \rightarrow C_a C_b \mid C_a S_B$, $S_B \rightarrow S C_b$, $C_a \rightarrow a$, $C_b \rightarrow b$, $w = aaabbb$. New symbols: C_a, C_b, S_B. Elimination of C_a, C_b:

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>$S \rightarrow a S_{B2,5}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>$S_B \rightarrow S_{2,4} b$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$S \rightarrow a S_{B3,3}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$S_B \rightarrow S_{3,2} b$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$S \rightarrow a b$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
Example

\[S \rightarrow C_a C_b \mid C_a S_B, \quad S_B \rightarrow S C_b, \quad C_a \rightarrow a, \quad C_b \rightarrow b, \quad w = aaabbb. \]

Replacing of \(S_B \) in rhs:

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 a a a b b b

1 2 3 4 5 6
Example

Given the grammar:

\[
S \rightarrow C_a C_b \mid C_a S_B, \quad S_B \rightarrow S C_b, \quad C_a \rightarrow a, \quad C_b \rightarrow b, \quad w = aaabbb
\]

Elimination of S_B:

<table>
<thead>
<tr>
<th>6</th>
<th>$S \rightarrow aS_{2,4}b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$S \rightarrow aS_{3,2}b$</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$S \rightarrow ab$</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
</tr>
</tbody>
</table>

```plaintext
1 2 3 4 5 6
```
Undo the elimination of unary productions:

- For every $A \rightarrow \beta$ in $C_{i,l}$ that has been added in removing of the unary productions to replace $B \rightarrow \beta'$ (β' is β without chart indices): replace A with B in this entry in $C_{i,l}$.

- For every unary production $A \rightarrow B$ in the original grammar and for every $B \rightarrow \beta \in C_{i,l}$: add $A \rightarrow B_{i,l}$ to $C_{i,l}$. Repeat this until chart does not change any more.
Undo the elimination of ϵ-productions:

- Add a row with $l = 0$ and a column with $i = n + 1$ to the chart.
- Fill row 0 as in the general case using the original CFG grammar (tabulating productions).
- For every $A \rightarrow \beta$ in $C_{i,l}$ that has been added in removing the ϵ-productions: add the deleted nonterminals to β with the position of the preceding non-terminal as starting position (or i if it is the first in the rhs) and with length 0.
Terminal Filter: Observation: Information on the obligatory presence of terminals might get lost in the CNF transformation:

\[S \rightarrow aSb \] (requires an \(a \), an \(S \) and a \(b \)) \(\sim \) \[S \rightarrow C_aS_B \] (requires an \(a \) and an \(S \) and a \(b \)) and \[S_B \rightarrow SC_b \] (requires an \(S \) and a \(b \))

Consider an input \(babb \):

- In a CYK parser with the original grammar, we would derive \([S, 2, 2] \) and \([b, 4, 1] \) but we could not apply \(S \rightarrow aSb \).
- In the CNF grammar, we would have \([S, 2, 2] \) and \([C_b, 4, 1] \) and then we could apply \(S_B \rightarrow SC_b \) and obtain \([S_B, 2, 3] \) even though the only way to continue with \(S_B \) in a rhs is with \(S \rightarrow C_aS_B \) which is not possible since the first terminal is not an \(a \).
Solution: add an additional check:

- Every new non-terminal D introduced for binarization stands (deterministically) for some substring β of a rhs $\alpha\beta$. Ex: S_B in our sample grammar stands for Sb.

- Every terminal in this rhs to the left of β, i.e., evey terminal in α must necessarily be present to the left for a deduction of a D that leads to a goal item. Ex: S_B can only lead to a goal item if to its left we have an a.

- **Terminal Filter**: During CNF transformation, for every non-terminal D introduced for binarization, record the sets of terminals in the rhs to the left of the part covered by D. During parsing, check for the presence of these terminals to the left of the deduced D item.
CNF leads to a binarization: In each completion, only two items are combined. Such a binarization can be obtained by using dotted productions:

- We process the rhs of a production from left to right.
- In each complete step, a production $A \rightarrow \alpha \bullet X \beta$ is combined with an X whose span starts at the end of the α-span. The result is a production $A \rightarrow \alpha X \bullet \beta$.
- We start with the completed terminals and their spans.

Note that this version of CYK is directional.
CYK with dotted productions (2)

Parsing schema for the general version (allowing also for ε-productions):

Goal items: \([S \rightarrow \alpha\bullet, 0, n]\) for all S-productions \(S \rightarrow \alpha\).

Deduction rules:

Predict (axioms): \[
\frac{[A \rightarrow \bullet\alpha, i, i]}{A \rightarrow \alpha \in P, i \in [0..n]}
\]

Scan: \[
\frac{[A \rightarrow \alpha \bullet a\beta, i, j]}{[A \rightarrow \alpha a \bullet \beta, i, j + 1]}
\]

\(w_{j+1} = a\)

Complete: \[
\frac{[A \rightarrow \alpha \bullet B\beta, i, j][B \rightarrow \gamma\bullet, j, k]}{[A \rightarrow \alpha B \bullet \beta, i, k]}
\]
CYK with dotted productions (3)

Parsing schema including passive items (just a non-terminal or terminal, no dotted production) and assuming an \(\varepsilon \)-free CFG:

Goal item: \([S, 0, n]\)

Deduction rules:

Scan (axioms): \([a, i, i + 1] \text{ } w_{i+1} = a \)

Left-corner predict: \(\begin{array}{c}
\text{Left-corner predict: } \\
[A \rightarrow X \bullet \alpha, i, j] \quad A \rightarrow X\alpha \in P, X \in N \cup T
\end{array} \)

Complete: \(\begin{array}{c}
\text{Complete: } \\
[A \rightarrow \alpha \bullet X\beta, i, j][X, j, k] \\
[A \rightarrow \alpha X \bullet \beta, i, k]
\end{array} \)

Publish: \(\begin{array}{c}
\text{Publish: } \\
[A \rightarrow \alpha \bullet, i, j] \\
[A, i, j]
\end{array} \)

(This is actually a deduction-based version of left-corner parsing.)
Example (without ϵ-productions, left-corner parsing): $S \rightarrow ab \mid aSb$

$w = aabb$

<table>
<thead>
<tr>
<th></th>
<th>$S \rightarrow aSb \bullet$</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$S \rightarrow aS \bullet b$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$S \rightarrow ab \bullet$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>$S \rightarrow a \bullet b$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$S \rightarrow a \bullet Sb$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 2 3 4
What about time complexity?

The most complex operation, \textit{complete}, involves only three indices \(i, j, k\) ranging from 0 to \(n\):

\[
\text{Complete: } \frac{[A \to \alpha \bullet X\beta, i, j][X, j, k]}{[A \to \alpha X \bullet \beta, i, k]}
\]

Consequently, the time complexity is \(O(n^3)\), as in the CNF case.

But: the data structure required for representing a parse item with a dotted production is slightly more complex than what is needed for simple passive items.
Conclusion

- CYK is a non-directional bottom-up parser.
- If used with CNF, it is very efficient. Time complexity is $O(n^3)$.
- The transformation into CNF can be undone after parsing, i.e., we still have a parser for arbitrary CFGs (as long as ϵ is not in the language).
- Instead of explicitly binarizing, we can use dotted productions and move through the righthand sides of productions step by step from left to right, which also leads to $O(n^3)$.
Bibliography

