Example: LL(1)-Parsing

Consider the CFG G = (N, T, P, S) with $N = \{S, A, B, C, D\}$, $T = \{a, b, c, d, e\}$ and

$$P = \{S \to AB \\ A \to CD \\ B \to aAB \mid \varepsilon \\ C \to bSc \mid d \\ D \to eCD \mid \varepsilon\}.$$

1. Compute the *First* sets of the right-hand sides of the productions and the *Follow* sets of the non-terminals.

$$First(AB) = \{b, d\}$$

$$First(CD) = \{b, d\}$$

$$First(aAb) = \{a\}$$

$$First(bSc) = \{b\}$$

$$First(d) = \{d\}$$

$$First(eCD) = \{e\}$$

$$First(\varepsilon) = \{\varepsilon\}$$

$$Follow(S) = \{\$, c\}$$

Follow(C) =
$$\{e, a, \$, c\}$$

$$Follow(D) = \{a, \$, c\}$$

$$Follow(B) = \{\$, c\}$$

$$Follow(A) = \{a, \$, c\}$$

2. Depending on the values you get, give the LL(1) parsing table.

	S	A	В	С	D
а	-	-	$B \rightarrow aAB$	-	$D \rightarrow \varepsilon$
b	$S \rightarrow AB$	$A \rightarrow CD$	-	$C \rightarrow bSc$	-
С	-	-	$B \rightarrow \varepsilon$	-	$D \rightarrow \varepsilon$
d	$S \rightarrow AB$	$A \rightarrow CD$	-	$C \rightarrow d$	-
e	-	-	1	-	$D \rightarrow eCD$
\$	-	-	$B \rightarrow \varepsilon$	-	$D \rightarrow \varepsilon$

3. Is this CFG LL(1)?

The given CFG is a LL(1) grammar since it does allow for deterministic top-down parsing because in every field of the parsing table there is only one possible production.