Motivation

- LR-parsing with one lookahead is deterministic for LR(1) grammars. But there are CFLs that cannot be generated by LR(1)-grammars.
- If a grammar is not LR(1), we can construct a LR(1) parse table with more than one entry in some of the fields. This can be used for non-deterministic parsing.
- However, since we don’t have tabulation, partial results get computed several times and the complexity is exponential.
- Tomita’s idea: Use a graph-structured stack to avoid computing partial results more than once.

Tomita’s parser is an LR parser with tabulation

Graph-structured stack (1)

The stack is a directed acyclic graph (DAG) with the leaves being the topmost elements.

A directed acyclic graph consists of

- A set of nodes (or vertices) \(V \) (here finite), and
- a set of edges \(E \subseteq V \times V \), such that
 a) for all \(v \in V \) : \((v, v) \notin E \), and
 b) for every sequence \(v_1, \ldots, v_k \in V \) with \((v_1, v_2), \ldots, (v_{k-1}, v_k) \in E \) : \(v_1 \neq v_k \).

In our case, the vertices of the DAG are labelled with states, non-terminals or terminals.
Graph-structured stack (2)

Our parsing is incremental, i.e., processes the input one by one from left to right.

For every word in the input, before processing that word, we have k possible states.

- We first do the possible reductions for each of the states while leaving the original stack if there is a shift possible. In case of a reduce/reduce or shift/reduce conflict, we branch. If several branches lead to the same states, we identify these.

We repeat this until no more reductions are possible.

- We then do the possible shifts. Again, if several lead to the same states, we identify these.

Graph-structured stack (3)

Example: 1. $S \rightarrow AB$, 2. $S \rightarrow SC$, 3. $B \rightarrow BC$,

4. $A \rightarrow a$, 5. $B \rightarrow b$, 6. $C \rightarrow c$

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>$$$</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>s4</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>s5</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>s6</td>
<td>acc</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Parse: 3. r1, s6 4. r1 5. r5 6. r6 7. r2 8. r3

table: 4. r4 5. r5 6. r6 7. r2 8. r3

Graph-structured stack (4)

For input $w = abcc$, at some point (after shifting the first c) the stack is the following:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Graph-structured stack (5)

Problems (infinite loops) in generalized LR parsing can arise from

- Loops: Productions $A \rightarrow B$, $B \rightarrow A$ would lead to an infinite reduce-loop.

- Hidden left-recursion: $A \rightarrow \alpha A \beta$ with $\alpha \Rightarrow \epsilon$ would lead to an infinite loop of reducing ϵ to α since $A \rightarrow \alpha \bullet A \beta$ and $A \rightarrow \bullet \alpha A \beta$ would be in the same state.
The parse forest (1)
- The dag-structure avoids an explosion in the number of stacks.
- However, we can still have exponentially many parse trees for a given input.
- Therefore, a compact representation of parse forests is needed.
- Tomita uses two techniques: sub-tree sharing and local ambiguity packing.

The parse forest (2)
Example: Take the preceding grammar, \(w = abcc \)
Three parse trees:

Sub-tree sharing: Common sub-trees are represented only once.

The parse forest (3)
Result of sub-tree sharing:

Local ambiguity packing: whenever the same category spans the same input (possibly with different analyses), the corresponding nodes are put into one packed node.

The parse forest (4)
Result of local ambiguity packing:
The parse forest (5)

Packed parse forests are easy to construct within an LR-parser with graph-structured stack: Whenever a subtree is shared or different subtrees are packed into one node, there will be a corresponding shared node in the stack graph. More precisely,

- Whenever a node is shared, we create a shared sub-tree, and
- whenever two or more branches get identified into a single new branch, we create a packed node.

Instead of non-terminals or terminals we use pointers to identifiers of parse trees as stack vertex labels. This way, in different places we can have pointers to the same parse tree.

The parse forest (6)

Example: $w = abc$.

<table>
<thead>
<tr>
<th>Stack</th>
<th>analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>s4</td>
</tr>
<tr>
<td>0⁻→</td>
<td>r4</td>
</tr>
<tr>
<td>0⁻→</td>
<td>s5</td>
</tr>
<tr>
<td>0⁻→1⁻→</td>
<td>r5</td>
</tr>
<tr>
<td>0⁻→1⁻→3</td>
<td>r1, s6</td>
</tr>
<tr>
<td>0⁻→1⁻→3</td>
<td>s6</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

The parse forest (7)

Example:

\[
\begin{array}{c}
0⁻→1⁻→3⁻→6 \quad r6 \\
| \quad \quad 2 | \quad c \\
0⁻→1⁻→3⁻→8 \quad r3 \\
| \quad \quad 2 -7 | \quad r2 | C(□) \\
0⁻→1⁻→3 \quad r1 | B(□□) \\
\quad \quad 2 \quad acc | S(□□) \\
0⁻→2 \quad acc | S(□□) | T(□□) \\
\end{array}
\]

Conclusion

Tomita's algorithm

- is a general LR(1) parser that works for every CFG;
- uses a graph-structured stack to avoid the explosion otherwise linked to non-determinism;
- uses a compact parse forest representation to avoid the explosion arising from ambiguous grammars.

Reference: