Introduction (1)
Top-Down Parsing: Scan and Predict with
\[
\text{Predict: } \begin{bmatrix} [A\alpha, i] \\ [\gamma\alpha, i] \end{bmatrix} A \rightarrow \gamma \in P
\]
Problem: in general highly non-deterministic.
Better if grammar in GNF but still non-deterministic.
Goal: find grammars that allow for deterministic top-down parsing.

Introduction (2)
Idea: Use the next terminal symbol(s) as lookahead to determine which production to predict.
Example: 1 lookahead.
Productions \(A \rightarrow X\beta \) and \(A \rightarrow Y\gamma \) such that \(X \overset{*}{\Rightarrow} b\beta' \) and \(Y \overset{*}{\Rightarrow} c\gamma' \).
Then:
\[
\begin{array}{c|c|c}
\text{stack} & \text{input} & \text{remaining input} \\
\hline
A\Gamma & b \ldots & A\Gamma c \ldots \\
X\beta\Gamma & b \ldots & Y\gamma\Gamma c \ldots \\
\end{array}
\]
Deterministic, if neither \(X \overset{*}{\Rightarrow} c \ldots \) nor \(Y \overset{*}{\Rightarrow} b \ldots \)
LL(1) grammars (1)

Intuition: A CFG is LL(1) if it allows for a deterministic top-down parsing with 1 lookahead.

In order to define LL(1), we define First and Follow.

Let $\alpha \in (N \cup T)^*$.

$$\text{First}(\alpha) = \{ a \mid \alpha \Rightarrow a\beta, a \in T, \beta \in (N \cup T)^* \} \cup \{ \varepsilon \mid \alpha \Rightarrow \varepsilon \}$$

Let $A \in N$.

$$\text{Follow}(A) = \{ a \mid S \Rightarrow \alpha A \beta, a \in T, \alpha, \beta \in (N \cup T)^* \} \cup \{ S \Rightarrow \alpha A, \alpha \in (N \cup T)^* \}$$

where $\$ \$ is a new symbol marking the end of the input.

LL(1) grammars (2)

Examples:

1. $G_1: S \rightarrow ab \mid aSb$
 $$\text{First}(ab) = \text{First}(aSb) = \{ a \}$$
 $$\text{Follow}(S) = \{ b, \$ \}$$
2. $G_2: S \rightarrow aB \mid bA, A \rightarrow a \mid aS \mid bAA, B \rightarrow b \mid bS \mid aBB$
 $$\text{First}(aB) = \{ a \}, \text{First}(bA) = \{ b \}$$
 $$\text{First}(a) = \text{First}(aS) = \{ a \}, \text{First}(bAA) = \{ b \}$$
 $$\text{Follow}(S) = \{ a, b, \$ \}$$
3. $G_3: S \rightarrow aT, T \rightarrow b \mid Sb$
 $$\text{First}(S) = \{ a \}, \text{First}(b) = \{ b \}, \text{First}(Sb) = \{ a \}$$

LL(1) grammars (3)

A CFG G is a LL(1)-grammar if for all $A \in N$:

Let $A \rightarrow \alpha_1 \ldots \alpha_n$ be all A-productions in G.

- $\text{First}(\alpha_1), \ldots, \text{First}(\alpha_n)$ are pairwise disjoint, and
- if $\varepsilon \in \text{First}(\alpha_j)$ for some $j \in \{1, \ldots, n\}$, then
 $$\text{Follow}(A) \cap \text{First}(\alpha_i) = \emptyset$$
 for all $1 \leq i \leq n, j \neq i$.

G_1 and G_2 are not LL(1), G_3 is LL(1).

There are CFLs that cannot be generated by a LL(1)-grammar. Example: $\{a^n b^n \mid n \geq 0\} \cup \{a^n d^n b^n \mid n \geq 0\}$

LL(1) grammars (4)

Transformations that can help to obtain an equivalent LL(1) grammar:

- Elimination of left-recursion.
- Left-factoring: elimination of A-productions whose rhs have the same prefix:
 Replace $A \rightarrow \alpha_1 \ldots, A \rightarrow \alpha_n \mid (\alpha \in (N \cup T)^+)$ with
 $A \rightarrow \alpha A', A' \rightarrow \beta_1, \ldots, A' \rightarrow \beta_n$ where A' is a new non-terminal.

Example: Transformation from G_1 to G_3.

Note: The page numbers and dates are consistent with the extracted content.
Computing First and Follow (1)

1. For all \(X \in N \cup T \): \(\text{First}(X) = \emptyset \).
 - If \(X \in T \), then add \(X \) to \(\text{First}(X) \).
 - If \(X \rightarrow \epsilon \in P \), then add \(\epsilon \) to \(\text{First}(X) \).
2. Do the following repeatedly until the \(\text{First} \)-sets do not change any more:
 - For each production \(X \rightarrow X_1 \ldots X_n \) with \(n \geq 1 \), add \(a \in T \) to \(\text{First}(X) \) if there is an \(i \in [1..n] \) such that
 - \(a \in \text{First}(X_i) \), and
 - \(\epsilon \in \text{First}(X_j) \) for all \(1 \leq j < i \).
 - If \(\epsilon \in \text{First}(X_j) \) for all \(1 \leq j < n \), then add \(\epsilon \) to \(\text{First}(X) \).
3. For all \(\alpha \in (N \cup T)^* \): Add a new nonterminal \(X_\alpha \) and a production \(X_\alpha \rightarrow \alpha \) and then compute \(\text{First}(\alpha) = \text{First}(X_\alpha) \).
4. \(\text{First}(\epsilon) = \{ \epsilon \} \).

Computing First and Follow (2)

Computing items \([A, t]\) with \(A \in N \cup T, t \in T \cup \{ \epsilon \} \) such that \([A, t]\) iff \(t \in \text{First}(A) \)

- Terminals: \([X, X] \rightarrow X \in T \)
- \(\epsilon \)-productions: \([A, \epsilon] \rightarrow A \rightarrow \epsilon \in P \)
- Bottom-up propagation:
 - \([B, X], [X_1, \epsilon], \ldots, [X_k, \epsilon] \rightarrow [A, X] \rightarrow X_1 \ldots X_k B \beta \in P, X \neq \epsilon \text{ or } \beta = \epsilon \)

Computing First and Follow (3)

Computing \(\text{Follow} \): Let \$ be a new symbol (the end marker).

1. For every \(A \in N \): \(\text{Follow}(A) = \emptyset \).
2. Add \$ to \(\text{Follow}(S) \).
3. Do the following until the \(\text{Follow} \)-sets do not change any more:
 - For each \(A \rightarrow \alpha B \beta \in P \) with \(\alpha, \beta \in (N \cup T)^*, B \in N \):
 - add \(\text{First}(\beta) \cap T \) to \(\text{Follow}(B) \).
 - if \(\epsilon \in \text{First}(\beta) \), then add \(\text{Follow}(A) \) to \(\text{Follow}(B) \).

(We assume all \(A \in N \) to be reachable.)

Computing First and Follow (4)

Computing items \([A, t]\) with \(A \in N, t \in T \cup \{ \$ \} \) such that \([A, t]\) iff \(t \in \text{Follow}(A) \)

- Axiom: \([S, \$] \)
- Right-to-left propagation:
 - \([B, a] \rightarrow A \rightarrow \alpha B X_1 \ldots X_k C \beta \in P, \{X_1, \ldots, [X_k, \epsilon], [C, a] \in \text{First} \}
- Top-down propagation:
 - \([A, X] \rightarrow A \rightarrow \alpha B X_1 \ldots X_k \in P, \{X_1, \ldots, [X_k, \epsilon] \in \text{First} \}

LL(\(k\)) Parsing 21 November 2012
LL(1) parsing (1)

If a CFG is a LL(1) grammar, then it allows for a deterministic top-down parsing where the next input symbol as lookahead determines the predict step to take.

We construct a parsing table that tells us, depending on
- the topmost stack symbol and
- the next input symbol,
which production we have to predict.

LL(1) parsing (2)

Example: \(G_3: S \rightarrow aT, T \rightarrow b | Sb \)

<table>
<thead>
<tr>
<th></th>
<th>(S)</th>
<th>(T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(S \rightarrow aT)</td>
<td>(T \rightarrow Sb)</td>
</tr>
<tr>
<td>(b)</td>
<td>(-)</td>
<td>(T \rightarrow b)</td>
</tr>
</tbody>
</table>

LL(1) parsing (3)

Construction of the parsing table \(M \):

For each production \(A \rightarrow \alpha \):
- For every \(a \in T \) with \(a \in \text{First}(\alpha) \): \(M(A, a) = A \rightarrow \alpha \).
- If \(\epsilon \in \text{First}(\alpha) \), then for each \(b \in \text{Follow}(A) \): \(M(A, b) = A \rightarrow \alpha \).

LL(1) parsing (4)

Example: \(S \rightarrow ABC, A \rightarrow aA | \epsilon, B \rightarrow cB | bB | \epsilon, C \rightarrow d \)

Parsing table:

<table>
<thead>
<tr>
<th></th>
<th>(S)</th>
<th>(A)</th>
<th>(B)</th>
<th>(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(S \rightarrow ABC)</td>
<td>(A \rightarrow aA)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>(b)</td>
<td>(S \rightarrow ABC)</td>
<td>(A \rightarrow \epsilon)</td>
<td>(B \rightarrow bB)</td>
<td>(-)</td>
</tr>
<tr>
<td>(c)</td>
<td>(S \rightarrow ABC)</td>
<td>(A \rightarrow \epsilon)</td>
<td>(B \rightarrow cB)</td>
<td>(-)</td>
</tr>
<tr>
<td>(d)</td>
<td>(S \rightarrow ABC)</td>
<td>(A \rightarrow \epsilon)</td>
<td>(B \rightarrow \epsilon)</td>
<td>(C \rightarrow d)</td>
</tr>
</tbody>
</table>
LL(k) parsing

If more than one symbol as lookahead is used, namely up to \(k \) symbols, the technique is called LL(\(k \)) parsing.

The definitions of First and Follow must be extended to contain terminal strings of up to \(k \) symbols.

The parse table gets much larger of course.

A CFG is LL(\(k \)) if it allows for deterministic top-down parsing with \(k \) lookahead symbols.

Conclusion

- LL(1) grammars allow for a deterministic top-down parsing.
- The next terminal in the remaining input (the lookahead) determines the predict step to take.
- First and Follow and the parse table can be precompiled.
- The set of languages generated by LL(1) grammars is a proper subset of CFL.