
Machine Learning
for natural language processing

Distributional Semantics

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Summer 2016

1 / 22

Introduction

Vector classi�cation: characterize a document by a vector that
captures its bag-of-words, i.e., that tells about the words occur-
ring in the document and about their frequencies.
Vector semantics (= distributional semantics) is very similar:
We characterize words by the words that occur with them.
�is vector representation tells a lot about the semantics of the
word, therefore distributional semantics.
Many notions from the session on k nearest neighbors will be
relevant for vector semantics.

Jurafsky & Martin (2015), chapters 15, 16

2 / 22

Table of contents

1 Motivation

2 Word vectors

3 Pointwise mutual information

4 From sparse vectors to dense embeddings

5 Evaluating vector models

3 / 22

Motivation

Underlying idea: words with a similar meaning tend to occur in
similar contexts.
First formulated by Harris (1954), pointing out that “oculist and
eye-doctor . . . occur in almost the same environment”.
Most famous formulation of this idea goes back to Firth (1957):
“You shall know a word by the company it keeps”.

Example from Nida (1975); Lin (1998); Jurafsky & Martin (2015)
(1) a. A bo�le of tesgüino is on the table.

b. Everybody likes tesgüino.
c. Tesgüino makes you drunk.
d. We make tesgüino out of corn.

⇒ “�e meaning of a word is thus related to the distribution of words
around it.” Jurafsky & Martin (2015)

4 / 22

Word vectors

Word-word matrix: Let V be our vocabulary. �en we use a
∣V ∣× ∣V ∣ matrix where each row represents the distributional vector of
a word. (Note that in the term-document matrix, each column was
one of our vectors, this is di�erent now!)

�e row i gives a vector of dimension ∣V ∣ that represents word vi.

�e cell i, j gives the frequency of vj in the contexts of vi. �e context
is generally a window around the word, i.e., k words to the le� and k
words to the right, for instance k = 4.

5 / 22

Word vectors

Example from Jurafsky & Martin (2015), chapter 19
Vectors for four words from the Brown corpus, showing only �ve of
the dimensions:

. . . computer data pinch result sugar . . .
apricot . . . 0 0 1 0 1 . . .
pineapple . . . 0 0 1 0 1 . . .
digital . . . 2 1 0 1 0 . . .
information . . . 1 6 0 4 0 . . .

�e dimensions represent context words.
We usually consider only the n most frequent words as dimensions of
our vectors with 10.000 ≤ n ≤ 50.000.

�e vectors are very sparse (i.e., contain a lot of zeros).

6 / 22

Word vectors
Syntactic dependencies connecting context words to the words we
want to characterize play a role for the meaning.

(2) a. Hans’ Ball rollt als erster ins Ziel.
b. Hans rollt seinen Ball als erster ins Ziel.

Simple context word vectors cannot account for the di�erence be-
tween the two readings of rollen.

(3) a. Hans isst Kuchen.
b. Kuchen isst Hans.

If the context window size is 1, we get
essen

Hans 2
Kuchen 2

I.e., Hans and Kuchen have the same vector.

7 / 22

Word vectors

Instead of using just words as context elements, one can also
use words combined with syntactic information.
Assume that we have a corpus with syntactic dependencies.
�en, instead of context words ci ∈ V , we use context elements
⟨dep, ci⟩ as dimensions.

subj-of, essen obj-of, essen
Hans 2 0
Kuchen 0 2

I.e., Hans and Kuchen have cos similarity 0.

8 / 22

Pointwise mutual information

As in the kNN case, the raw frequency counts are not the best
measures for associations between words. One common association
measure used in stead is pointwise mutual information (PMI).
�e PMI of two events x and y measures how o�en x and y occur
together compared to what we would expect if they were
independent:

PMI(x,y) = log2
P(x,y)

P(x)P(y)
Recall that P(x,y) = P(x)P(y∣x) and that for independent events we
have P(y∣x) = P(y). I.e., for independent events x, y, we obtain
PMI(x,y) = log2 1 = 0.

9 / 22

Pointwise mutual information

For our speci�c case of vector semantics, we measure the association
between a target word w and a context word c as

PMI(w, c) = log2
P(w, c)

P(w)P(c)

PMI gives us an estimate of how much more the word w and context
word c co-occur than we would expect by chance.

10 / 22

Pointwise mutual information

Reminder:

0 0.5 1 1.5 2

−4

−2

0

log2(x)

In particular, log2(1) = 0 (events are completely independent,
therefore there is no need to consider the value in the vector), and
log2(0) is not de�ned (−∞), i.e., PMI has a problem for pairs w, c that
never occur together.

11 / 22

Pointwise mutual information
Negative PMI values (w and c occur together less o�en than by
chance) tend to be unreliable. �erefore, one usually uses positive
PMI (PPMI):

PPMI(w, c) = max(log2
P(w, c)

P(w)P(c) , 0)

We can get these probabilities by MLE using the frequencies: Let
W = {w1, . . . ,w∣W ∣} be our set of words, C = {c1, . . . , c∣C∣} our set of
context words, fij the frequency of cj in the context of wi. �en

P(wi, cj) = fij
∑
∣W ∣
n=1∑

∣C∣
m=1 fnm

P(wi) = ∑
∣C∣
m=1 fim

∑
∣W ∣
n=1∑

∣C∣
m=1 fnm

P(cj) = ∑
∣W ∣
n=1 fnj

∑
∣W ∣
n=1∑

∣C∣
m=1 fnm

12 / 22

Pointwise mutual information

Example from Jurafsky & Martin (2015) continued
Counts replaced with joint probabilities:

computer data pinch result sugar p(w)
apricot 0 0 0.05 0 0.05 0.11
pineapple 0 0 0.05 0 0.05 0.11
digital 0.11 0.05 0 0.05 0 0.21
information 0.05 0.32 0 0.21 0 0.58
p(c) 0.16 0.37 0.11 0.26 0.11

PPMI matrix:
computer data pinch result sugar

apricot 0 0 2.25 0 2.25
pineapple 0 0 2.25 0 2.25
digital 1.66 0 0 0 0
information 0 0.57 0 0.47 0

13 / 22

Pointwise mutual information

(P)PMI has a bias towards infrequent events. �erefore one sometimes
replaces the above MLE P(cj) with

Pα(cj) =
(∑∣W ∣n=1 fnj)α

∑∣C∣m=1(∑
∣W ∣
n=1 fnm)α

for example with α = 0.75 (Levy et al., 2015).

To avoid the 0 entries, one can also apply Laplace smoothing before
computing PMI: add a constant k to all counts (usually 0.1 ≤ k ≤ 3).

Another association measure sometimes used in vector semantics:

t − test(w, c) = P(w, c) − P(w)P(c)√
P(w)P(c)

14 / 22

From sparse vectors to dense embeddings

So far, our vectors are high-dimensional and sparse. Singular value
decomposition (SVD) is a classic method for generating dense
vectors.

Idea:

Change the dimensions such that they are still orthogonal to
each other.
�e new dimensions are such that the �rst describes the largest
amount of variance in the data, the second the second large
variance amount etc.
�en, instead of keeping all the m dimensions resulting from
this, we only keep the �rst k.

15 / 22

From sparse vectors to dense embeddings

Example with 2 dimensions
c2

c1

m1m2

⋅
⋅
⋅⋅

⋅

⋅

⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅
⋅
⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅
⋅⋅
⋅⋅⋅⋅⋅⋅
⋅⋅ ⋅
⋅

�e original dimensions c1 and c2 get replaced with m1 and m2.
�en we could truncate and keep only the dimension m1.

A�er truncation, we obtain context vectors of dimension k for each
word. �ese are dense embeddings.

16 / 22

From sparse vectors to dense embeddings

Assume that we have w words and c context words. �en, in gneral,
SVD decomposes the w × c word-context matrix X into a product of
three matrices W , Σ, C:
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1 0 0 . . . 0
0 σ2 0 . . . 0
0 0 σ3 . . . 0

. . .
0 0 0 . . . σm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

w × c w ×m m ×m m × c

Each row in X is a PPMI context word vector of a word. Each row in
W is a word embedding of a word in a new m-dimensional vector
space.

17 / 22

From sparse vectors to dense embeddings

Example

[1 2
2 4] = [1 0

2 0] [
√
5 0
0 1]

⎡⎢⎢⎢⎢⎣

1
√

5
2
√

5
− 2
√

5
1
√

5

⎤⎥⎥⎥⎥⎦

matrixW : �rst dimension (i.e., vector ⟨1, 0⟩) corresponds to
⟨1, 2⟩ in original matrix X ;
matrix Σ: multiply length 1 with the length of ⟨1, 2⟩;
matrix C: rotation from x-axis to the axis along ⟨1, 2⟩;

Last step: truncation.�e second dimension inW can be le� out,

which leads to [1
2] instead of the original [1 2

2 4], giving 1-
dimensional embedding vectors for each word.

18 / 22

From sparse vectors to dense embeddings

Other popular methods for generating dense embeddings are
skip-gram and continuous bag of words (CBOW).
Both of them are implemented in the word2vec package Mikolov
et al. (2013).

19 / 22

Evaluating vector models

One common way to test distributional vector models is to evaluate
their performance on similarity. Some datasets one can evaluate on:

WordSim-353, a set of ratings from 0 to 10 of the similarity of
353 noun pairs
SimLex includes both concrete and abstract noun and verb
pairs.
�e TOEFL dataset is a set of 80 questions, each consisting
of a target word and 4 word choices. E.g., Levied is closest in
meaning to: imposed, believed, requested, correlated

�e Stanford Contextual Word Similarity (SCWS) dataset
gives human judgements on 2,003 pairs of words in their sen-
tential context.

20 / 22

References

Firth, J. R. 1957. A synopsis of linguistic theory 1930–1955. In Studies in linguistic
analysis, Philological Society. Reprinted in Palmer, F. (ed.) 1968. Selected Papers of
J. R. Firth. Longman, Harlow.

Harris, Z. S. 1954. Distributional structure. Word 10. 146–162. Reprinted in J. Fodor
and J. Katz,�e Structure of Language, Prentice Hall, 1964 and in Z. S. Harris,
Papers in Structural and Transformational Linguistics, Reidel, 1970, 775–794.

Jurafsky, Daniel & James H. Martin. 2015. Speech and language processing. an
introduction to natural language processing, computational linguistics, and
speech recognition. Dra� of the 3rd edition.

Levy, Omer, Yoav Goldberg & Ido Dagan. 2015. Improving distributional similarity
with lessons learned from word embeddings. Transactions of the Association for
Computational Linguistics 3. 211–225. https://tacl2013.cs.
columbia.edu/ojs/index.php/tacl/article/view/570.

Lin, Dekang. 1998. Automatic retrieval and clustering of similar words. In
Proceedings of the 17th international conference on computational linguistics -
volume 2 COLING ’98, 768–774. Stroudsburg, PA, USA: Association for
Computational Linguistics. doi:10.3115/980432.980696.
http://dx.doi.org/10.3115/980432.980696.

21 / 22

https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/570
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/570
http://dx.doi.org/10.3115/980432.980696

Mikolov, T., K. Chen, G. Corrado & J. Dean. 2013. E�cient estimation of word
representations in vector space. ICLR .

Nida, E. A. 1975. Componential analysis of meaning: An introduction to semantic
structures. �e Hague: Mouton.

22 / 22

	Motivation
	Word vectors
	Pointwise mutual information
	From sparse vectors to dense embeddings
	Evaluating vector models

