Machine Learning
for natural language processing

N-grams and language models

Laura Kallmeyer
Heinrich-Heine-Universitat Diisseldorf

Summer 2016

HEINRICH HEINE

UNIVERSITAT DUSSELDORF

Introduction

Goals:
m Estimate the probability that a given sequence of words occurs
in a specific language.

m Model the most probable next word for a given sequence of
words.

Jurafsky & Martin (2015), chapter 4, and Chen & Goodman (1999)

Table of contents

a Motivation

© N-grams

© Maximum likelihood estimation
@ Evaluating language models

© Unknown words

@ Smoothing

Motivation

Examples from Jurafsky & Martin (2015)

m (1) Please turn your homework ...
What is a probable continuation? Rather in or over and not
refrigerator.

m (2) a. all of a sudden I notice three guys standing on the side-
walk
b. on guys all I of notice sidewalk three a sudden standing
the
Which of the two word orders is better?

Language model (LM): Probabilistic model that gives P(w; ... w,) and
P(wp|wy ... Wyq)

Motivation
Applications:
m Tasks in which we have to identify words in noisy, ambiguous
input: speech recognition, handwriting recognition, ...

m spelling correction

Example

(3) a. their is only one written exam in this class
b. there is only one written exam in this class

= machine translation: among a series of different word orders
in the target language, one has to choose the best one.

Example

(4) a. Das Fahrrad wird er heute reparieren.
b. The bike will he today repair
c. 'The bike he will today repair.

d. The bike he will repair today.

N-grams

Notation: w™ = wy ... wp,.
Question: How can we compute P(wj")?

P(w") = Pngwl)P(w2|w1)P(w3|wf)...P(wm|wlm’1)
IUP(Wk|Wf_1)

But: computing P(wi|w<™!) for a large k is not feasible.

Approximation of P(wi|wf™1): N-grams, i.e., look at just the n — 1 last
words, P(wi|w L,)).
Special cases:

m unigrams: P(wy)

m bigrams: P(wy|wi_1)

m trigrams: P(wi|wi_owi_1)

N-grams
With n-grams, we get

@ Probability of a sequence of words:
) l k-1
P(wy) = HP(Wk|Wk—n+1
k=1
@ Probability of a next word:

P(wlwi™') =~ P(wlw_},,

These are strong independence assumptions called Markov
assumptions. E.g. with bigrams

Example

P(einfach|die Klausur war nicht) ~ P(einfach|nicht)

Maximum likelihood estimation (MLE)

Question: How do we estimate the n-gram probabilities?

Maximum likelihood estimation (MLE): Get n-gram counts from a
corpus and normalize so that the values lie between 0 and 1.

C(Wlls_rlwl Wk)

P(Wklwk n+1) = C(W

—n+1
In the bigram case, this amounts to
C Wi-1 Wk
Py 1) = SEke1 %)
C(Wk—l)

We augment sentences with an initial (s) and a final (/s)

Maximum likelihood estimation (MLE)

Example from Jurafsky & Martin (2015)

Training data:

<s>1 am Sam< /s>

<s>Sam I am< /s>

<s>I do not like green eggs and ham< /s>

Some bigram probabilities:

P(I|<s>)=% P(Sam|<s>) =3 P(am|I) =
_1 _1 _
P(< /s >|Sam) = ; P(Sam|am) = ; P(do|T) =

W =W N

Maximum likelihood estimation (MLE)

Practical issues:

m In practice, n is mostly between 3 and 5, i.e., we use trigrams,
4-grams or 5-grams.

m LM probabilities are always represented as log probabilities. Ad-
vantage: Adding replaces multiplying and numerical overflow
is avoided.

pr-p2-...pr=exp(logp; +logp, + - +logp)

10/25

Maximum likelihood estimation (MLE)

Reminder: log1 = 0,log0 = —o0
T T T

0

-0.5

-1

-1.5

-2

-2.5

—eo—log,, x F

0.2

0.4

0.6

0.8 1

Evaluating language models

The data is usually separated into

m a training set (80% of the data),
m a test set (10% of the data),

m and sometimes a development set (10% of the data).

The model is estimated from the training set. The higher the
probability of the test set, the better the model.

Instead of measuring the probability of the test set, LMs are usually
evaluated with respect to the perplexity of the test set. The higher the
probability, the lower the perplexity.

Evaluating language models

The perplexity of a test set W = wyw, ... wy is defined as

P(W)~
—- N 1
P(W)

- N~/ 1

- P(wiw;...wN)

— 1

B N N k-1
HP(Wk|W1_)
k=1

With our n-gram model, we get then for the perplexity:

pp(W) = | 1
\ P(Wk|wllz:rlz+1)

k

z|=

pP(W)

I

1=

I
—

Evaluating language models

A different way to think about perplexity: it measures the weighted
average branching factor of a language.

Example

L = {a,b,c,d}*. Frequencies are such that P(a) = P(b) = P(c) =
P(d) = 1 (independent from the context).

For any w € L, given this model, we obtain

= WM - 4

The perplexity of any w € L under this model is 4.

Evaluating language models

Example

L={a,b,c,d}*. Words in the language contain three times as many
as as they contain bs, cs or ds. P(a) = § and P(b) = P(c) = P(d) = <.
For any w € L with these frequencies and with |w| = 6n:

1 n
PP(w) = | 5 = Voon /3" = 2/3 = 3.46

1 1
£32:2:2:6-6-6

Assume that we use the same model but test it on a W with equal
numbers of as, bs, cs and ds, |W| = 4n. Then we get

1 n 4n
N 3o /31t = 2¢27 =456

noo1
52-6-6-6

Unknown words
Problem: New text can contain
m unknown words; or
B unseen n-grams.
In these cases, with the algorithm seen so far, we would assign

probability 0 to the entire text. (And we would not be able to compute
perplexity at all.)

Example from (Jurafsky & Martin, 2015)

Words following the bigram denied the in WSJ Treebank 3 with

counts:
denied the allegations

5
denied the speculation 2
denied the rumors 1
denied the report 1
If the test set contains denied the offer or denied the loan, the model
would estimate its probability as 0.

16/25

Unknown words

Unknown or out of vocabulary words:

m Add a pseudo-word (UNK)to your vocabulary.
m Two ways to train the probabilities concerning (UNK):

@ Choose a vocabulary V fixed in advance. Any word w ¢ V in the
training set is converted to (UNK). Then estimate probabilities
for (UNK)as for all other words.

@ Replace the first occurrence of every word w in the training
set with (UNK). Then estimate probabilities for (UNK)as for all
other words.

Smoothing

Unseen n-grams: To avoid probabilities 0, we do smoothing: Take off
some probability mass from the events seen in training and assign it
to unseen events.

Laplace Smoothing (or add-one smoothing):

m Add 1 to the count of all n-grams in the training set before
normalizing into probabilities.

m Not so much used for n-grams but for other tasks, for instance
text classification.

m For unigrams, if N is the size of the training set and |V| the size
of the vocabulary, we replace

P(w) = S50 with Propieee(w) = S

m For blgrams, we replace

C(wp—1wn . C(Wn—1wn
P(Wn|Wn_1) = % with PLaplace(Wn|Wn—1) = %

Smoothing
Smoothing methods for n-grams that use the (n - 1)-grams,
(n—2)-grams etc.:

m Backoff: use the trigram if it has been seen, otherwise fall back
to the bigram and, if this has not been seen either, to the uni-
gram.

m [nterpolation: Use always a weighted combination of the tri-
gram, bigram and unigram probabilities.

Linear interpolation:
P(w,,|wn_2wn_1) = M P(wp|Wpawy—1) + AoP(wy|wp—1) + AsP(wy)

with " A; = 1.

Smoothing

More sophisticated: each A is computed conditioned on the context.

P(walwnaWn-1) = Ai(Wn_aWn_1)P(Wn|Wn_aWn_1)
+)\2(Wn—2Wn—1)P(Wn|Wn—1)
+)\3(Wn72Wn71)P(Wn)

In both cases,

m the probabilities are first estimated from the training corpus,
m and the)\ parameters are then estimated from separate held-
out data.

m They are estimated such that they maximize the likelihood of
the held-out data. This can be done for example using the EM
algorithm (to be introduced later in this course).

20/25

Smoothing

Most commonly used N-gram smoothing method: Kneser-Ney
algorithm Kneser & Ney (1995); Chen & Goodman (1999).

Idea: discount the count of an n-gram by the average discount we see
in a held-out corpus.

Table from Jurafsky & Martin (2015)

Average bigram counts in held-out corpus of 22 million words for all
bigrams in 22 million words training data of AP newswire (Church
& Gale, 1991):

count average count count average count
training held-out training held-out
0 0.0000270 5 421
1 0.448 6 523
2 125 7 6.21
3 224 8 7.21
4 323 9 8.26

Smoothing

Absolute discounting:

C(wi_lwi) -d

) + A(wi—1)P(w;)

PAbsoluteDiscounting(Wi| Wi-1) =

Possible discount d = 0.75.

Further refinement: replace P(w;) with the probability that we see w;
as a continuation. Underlying intuition: If w; has appeared in many
contexts, it is a more likely continutation in a new context.

{wlC(wwi) >0} {w|C(wwi) > 0}
{wis1w; | C(wj—1wy) >0} 2., [{wj-1 [C(wj1w;) > 0}

Pcontinuation(wi) = |

22/25

Smoothing

Interpolated Kneser-Ney smoothing:

max(C(wj_iw;) —d,0
PKN(Wi|Wi71) = ((C(lwl ll))) +)\(Wifl)Pcontinuation(Wi)
i

where A(w;_1) is a normalizing constant:

A(Wir) = {w[C(wi-1w) > 0}

_4
C(Wi_1)
Here,

] % is the normalized discount, and
C(Wkl)

m [{w|C(wi_1w) > 0}| is the number of word types that can
follow wj;_1, i.e., the number of times we applied the normalized
discount.

Smoothing

Finally, we obtain as a generalization (Chen & Goodman, 1999):

Interpolated Kneser-Ney

Forn>1:

i-1 —
Pen(Wilwiip) =
max(C(w}_ n+1)—d,0)

C(wit!

+)\(Wl n+1)PKN(W1’Wl n+2)

i—n+1
and the recursion terminates with

{w|C(ww;) >0}
[{ wj-1w;| C(wj-1w;) > 0}

Prn(w;) =

I
33

References

Chen, Stanley F. & Joshua Goodman. 1999. An empirical study of smoothing
techniques for language modeling. Computer Speech and Language 13. 359-394.

Church, K. W. & W. A. Gale. 1991. A comparison of the enhanced Good-Turing and
deleted estimation methods for estimating probabilities of English bigrams.
Computer Speech and Language 5. 19-54.

Jurafsky, Daniel & James H. Martin. 2015. Speech and language processing. an
introduction to natural language processing, computational linguistics, and
speech recognition. Draft of the 3rd edition.

Kneser, R. & H. Ney. 1995. Improved backing-off for m-gram language modeling. In
Proceedings of the IEEE international conference on acoustics, speech and signal
processing, vol. 1, 181-184. Detroit, MIL.

25/25

	Motivation
	N-grams
	Maximum likelihood estimation
	Evaluating language models
	Unknown words
	Smoothing

