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Introduction

Classi�cation = supervised method for classifying an input,
given a �nite set of possible classes.
Today: Vector-based document classi�cation.

Jurafsky & Martin (2015), chapter 15, Jurafsky & Martin (2009) chapter
20 and Manning et al. (2008), chapter 14

2 / 28



Table of contents

1 Motivation

2 Vectors and documents

3 Measuring vector distance/similarity

4 k nearest neighbors

3 / 28



Motivation

We can characterize documents by large vectors of real-valued
features.
Features are for instance words of a given vocabulary and their
values re�ect their occurrences in the document.
�is gives us a vector-space model of document classes.
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Vectors and documents

Term-document matrix: Let V be our vocabulary, D our set of
documents. A term-document matrix characterizing D with respect to
V is a ∣D∣ × ∣V ∣ where the cell for vi and dj contains the number of
occurrences of vi in di.

Each column in this matrix gives a vector of dimension ∣V ∣ that
represents a document.

�is is again the bag-of-words representation of documents, except
that V does not contain all words from the documents in D.
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Vectors and documents

Example from Jurafsky & Martin (2015), chapter 19
Term-document matrix for four words in four Shakespeare plays:

As You Like It Twelth Night Julius Caesar Henry V
ba�le 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown 5 117 0 0

In real applications, we usually have 10.000 ≤ ∣V ∣ ≤ 50.000.
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Vectors and documents

General idea: Two documents are similar if they have similar vectors.

Example from Jurafsky & Martin (2015), chapter 19 continued
Take only dimensions fool and ba�le from the previous matrix:

ba�le

fool
Twel�h Night (58,1)

Henry V (5,15)

As You Like It (37,1)

Julius Caesar (1,8)
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Vectors and documents

�e above frequency counts are not the best measures for associations
between terms and documents:

A highly frequent word like the will not tell us anything about
the class of a document since it occurs (more or less) equally
frequent in all documents.
Rare words also might be equally rare in all types of docu-
ments.
�e frequencies of such words, which are independent from
the document class, should weigh less than the frequencies of
words that are very typical for certain classes.

We need a weighting scheme that takes this into account.
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Vectors and documents
A standard weighting scheme for term-document matrices in
information retrieval is tf-idf:

tf-idf
term frequency: tftd = frequency of term t in document d. �is
can be simply the count of t in d.
document frequency: dft = number of documents in which
term t occurs
inverse document frequency: idft = log ( ∣D∣dft

)

tf-idf: wtd = tftd idft

Terms occurring in lesser documents are more discriminative.
�erefore their counts are weighted with a higher idf factor. Since ∣D∣
is usually large, we use the log of the inverse document frequency.

Note, however, that terms occurring in all documents get a weight 0.
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Vectors and documents

Reminder:
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Measuring vector distance/similarity
Each document d is characterized with respect to a vocabulary
V = {t1, . . . , t∣V ∣} by a vector, for instance

⟨tft1,d idft1 , . . . , tft∣V ∣,d idft∣V ∣⟩

if we use tf-idf.

In order to compare documents, we need some metric for the distance
of two vectors. One possibility is the Euclidian distance.

�e length of a vector is de�ned as

∣v⃗∣ =

¿
Á
ÁÀ

n

∑
i=1

v2i

We de�ne the Euclidian distance of two vectors v⃗, w⃗ as

∣v⃗ − w⃗∣ =

¿
Á
ÁÀ

n

∑
i=1
(vi −wi)

2
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Measuring vector distance/similarity

In order to use the Euclidian distance, we �rst have to normalize the
vectors, i.e., we use

∣
v⃗
∣v⃗∣
−

w⃗
∣w⃗∣
∣ =

¿
Á
ÁÀ

n

∑
i=1
(
vi
∣v⃗∣
−

wi

∣w⃗∣
)
2

Alternatively, we can also use a metric for the similarity of vectors.

�e most common metric used in NLP for vector similarity is the
cosine of the angle between the vectors.
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Measuring vector distance/similarity
Underlying idea: We use the dot product from linear algebra as a
similarity metric: For vectors v⃗, w⃗ of dimension n,

v⃗ ⋅ w⃗ =
n

∑
i=1

viwi

Example: dot product
Consider the following term-document matrix:

d1 d2 d3 d4
t1 1 2 8 50
t2 2 8 3 20
t3 30 120 0 2

d1, d2: v⃗d1 ⋅ v⃗d2 = ⟨1, 2, 30⟩ ⋅ ⟨2, 8, 120⟩ = 3618
d1, d3: v⃗d1 ⋅ v⃗d4 = 200
But: v⃗d2 ⋅ v⃗d4 = 500 and v⃗d3 ⋅ v⃗d4 = 460
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Measuring vector distance/similarity

�e dot product favors long vectors. �erefore, we use the
normalized dot product, i.e., we divide by the lengths of the two
vectors.

Cosine similarity metric

CosSim(v⃗, w⃗) =
v⃗ ⋅ w⃗
∣v⃗∣ ∣w⃗∣

=

n

∑
i=1

viwi

¿
Á
ÁÀ

n

∑
i=1

v2i

¿
Á
ÁÀ

n

∑
i=1

w2
i

= cosφ

where φ is the angle between v⃗ and w⃗.
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Measuring vector distance/similarity

Reminder: �is is how the cosine looks like for angles between 0 and
90 (with all vector components ≥ 0, other angles cannot occur):
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Measuring vector distance/similarity

Example: cosine similarity
Consider again the following term-document matrix:

d1 d2 d3 d4
t1 1 2 8 50
t2 2 8 3 20
t3 30 120 0 2
∣v⃗d ∣ 30,08 120,28 8,54 53,89

Cosine values:
d1 d2 d3

d2 1
d3 0.05 0.04
d4 0.09 0.08 1

(�e cosine values for d1, d2 and for d3, d4 are rounded.)
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Measuring vector distance/similarity
Cosine similarity is not invariant to shi�s.

Cosine

1 2 3

1

2

3 Adding 1 to all components
increases the cosine similarity.

�e Euclidian distance, however,
remains the same (if used without
normalization).

An alternative is the Pearson correlation:
Pearson correlation

Let v = ∑
n
i=1 vi
n be the means of the vector components.

Corr(v⃗, w⃗) = ∑
n
i=1(vi − v)(wi −w)
∣v⃗ − v∣ ∣w⃗ −w∣

= CosSim(v⃗ − v, w⃗ −w)

where ⟨v1, . . . , vn⟩ − c = ⟨v1 − c, . . . , vn − c⟩.
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Measuring vector distance/similarity
Two other widely used similarity measures are Jaccard and Dice. �e
underlying idea is that we measure the overlap in the features.
�erefore in both metrics, we include

n

∑
i=1

min(vi,wi)

Jaccard similarity measure

simJaccard(v⃗, w⃗) = ∑
n
i=1min(vi,wi)

∑
n
i=1max(vi,wi)

Dice is very similar except that it does not take the max but the
average in the denominator:

Dice similarity measure

simDice(v⃗, w⃗) =
2∑n

i=1min(vi,wi)

∑
n
i=1 vi +wi
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k nearest neighbors

In the following, we are concerned with the task of classifying a
document by assigning it a label drawn from some �nite set of labels.

Our training data consists of a set D of documents, each of which is in
a unique class c ∈ C.

Documents are represented as vectors, i.e., our task amounts to
classifying a new vector, given the classes of the training vectors.

Idea of k nearest neighbors (kNN): in order to classify a new
document d, take the majority class of the k nearest neighbors of d in
the training document vector space.
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k nearest neighbors
Example: k nearest neighbors
Task: classify �ctional texts in topic classes l (=love) and c (=crime).
Training: Class l Class c new docs:
terms d1 d2 d3 d4 d5 d6 d7
love 10 8 7 0 1 5 1
kiss 5 6 4 1 0 6 0
inspector 2 0 0 12 8 2 12
murderer 0 1 0 20 56 0 4
∣v⃗d ∣ 11.36 10.05 8.06 23.35 56.58 8.06 12.69

Before comparing vectors, we should normalize them. (�e de�nition
of the cosine similarity above includes normalization.) I.e., every
v⃗ = ⟨v1, . . . vn⟩ gets replaced with

v⃗
∣v⃗∣

= ⟨
v1
∣v⃗∣
, . . . ,

vn
∣v⃗∣
⟩ where ∣v⃗∣ =

¿
Á
ÁÀ

n

∑
i=1

v2i
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k nearest neighbors

Example continued
Normalized data:
Training: Class l Class c new docs:
terms d1 d2 d3 d4 d5 d6 d7
love 0.88 0.8 0.87 0 0.02 0.62 0.08
kiss 0.44 0.6 0.5 0.04 0 0.74 0
inspector 0.18 0 0 0.51 0.14 0.25 0.95
murderer 0 0.1 0 0.86 0.99 0 0.32

Euclidian distances:
d1 d2 d3 d4 d5

d6 0.4 0.35 0.43 1.3 1.38
d7 1.24 1.35 1.37 0.7 1.05
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k nearest neighbors

Example continued
Visualization of the dimensions love and murderer including the k
nearest neighbors of each of the new documents d6, d7 for k = 1 and
k = 3:

l
l
l

c
c

d6

d7

For both ks, the majority class of the k nearest neighbors of d6 is l
while the one of d7 is c.
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k nearest neighbors
Some notation:

Sk(d) is the set of the k nearest neighbor documents of a new
document d.
v⃗(d) is the vector of a document d.
We de�ne Ic ∶ Sk(d) → {0, 1} for a class c and a document d as
Ic(dt) = 1 if the class of dt is c, otherwise Ic(dt) = 0.

�en kNN assigns the following score to each class c, given a
document d that has to be classi�ed:

score(c, d) = ∑
dt∈Sk(d)

Ic(dt)

�e classi�er then assigns to d the class c from the set of classes C
with the highest score:

ĉ = argmax
c∈C

score(c, d)
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k nearest neighbors

Choice of the k:

usually an odd number;
k = 3 or k = 5 are frequent choices but sometimes much larger
values are also used;
k can be choosen according to experiments during training on
held-out data.
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k nearest neighbors

kNN can be used as a probabilistic classi�er: We can de�ne

P(c∣d) =
∑dt∈Sk(d) Ic(dt)

k

Example continued

Euclidian distances:
d1 d2 d3 d4 d5

d6 0.4 0.35 0.43 1.3 1.38
d7 1.24 1.35 1.37 0.7 1.05

Probabilities:
k = 1 S1(d6) = {d2},P(l∣d6) = 1,P(c∣d6) = 0

S1(d7) = {d4},P(l∣d7) = 0,P(c∣d7) = 1
k = 3 S3(d6) = {d1, d2, d3},P(l∣d6) = 1,P(c∣d6) = 0

S3(d7) = {d1, d4, d5},P(l∣d7) = 1
3 ,P(c∣d7) =

2
3
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k nearest neighbors

Problem: For k > 1, the majority vote does not take the individual
distances of the k nearest neighbors to v⃗(d) into consideration.

Example
k = 5, classes A and B, document d has to be classi�ed. Assume we
have the following situation:

A
A

A

Bd
B
B

�e classi�er would assign B. But the two A documents in S5(d) are
much nearer to d than the three B documents.
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k nearest neighbors

Possible solution:
weight the elements in Sk(d) be their similarity to d.

�is gives the following revised de�nition of the score, including the
cos similarity measure:

score(c, d) = ∑
dt∈Sk(d)

Ic(dt) cos(v⃗(dt), v⃗(d))

where v⃗(d) is the vector of some document d.
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