
Machine Learning
for natural language processing

Classi�cation: k nearest neighbors

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf

Summer 2016

1 / 28

Introduction

Classi�cation = supervised method for classifying an input,
given a �nite set of possible classes.
Today: Vector-based document classi�cation.

Jurafsky & Martin (2015), chapter 15, Jurafsky & Martin (2009) chapter
20 and Manning et al. (2008), chapter 14

2 / 28

Table of contents

1 Motivation

2 Vectors and documents

3 Measuring vector distance/similarity

4 k nearest neighbors

3 / 28

Motivation

We can characterize documents by large vectors of real-valued
features.
Features are for instance words of a given vocabulary and their
values re�ect their occurrences in the document.
�is gives us a vector-space model of document classes.

4 / 28

Vectors and documents

Term-document matrix: Let V be our vocabulary, D our set of
documents. A term-document matrix characterizing D with respect to
V is a ∣D∣ × ∣V ∣ where the cell for vi and dj contains the number of
occurrences of vi in di.

Each column in this matrix gives a vector of dimension ∣V ∣ that
represents a document.

�is is again the bag-of-words representation of documents, except
that V does not contain all words from the documents in D.

5 / 28

Vectors and documents

Example from Jurafsky & Martin (2015), chapter 19
Term-document matrix for four words in four Shakespeare plays:

As You Like It Twelth Night Julius Caesar Henry V
ba�le 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown 5 117 0 0

In real applications, we usually have 10.000 ≤ ∣V ∣ ≤ 50.000.

6 / 28

Vectors and documents

General idea: Two documents are similar if they have similar vectors.

Example from Jurafsky & Martin (2015), chapter 19 continued
Take only dimensions fool and ba�le from the previous matrix:

ba�le

fool
Twel�h Night (58,1)

Henry V (5,15)

As You Like It (37,1)

Julius Caesar (1,8)

7 / 28

Vectors and documents

�e above frequency counts are not the best measures for associations
between terms and documents:

A highly frequent word like the will not tell us anything about
the class of a document since it occurs (more or less) equally
frequent in all documents.
Rare words also might be equally rare in all types of docu-
ments.
�e frequencies of such words, which are independent from
the document class, should weigh less than the frequencies of
words that are very typical for certain classes.

We need a weighting scheme that takes this into account.

8 / 28

Vectors and documents
A standard weighting scheme for term-document matrices in
information retrieval is tf-idf:

tf-idf
term frequency: tftd = frequency of term t in document d. �is
can be simply the count of t in d.
document frequency: dft = number of documents in which
term t occurs
inverse document frequency: idft = log (∣D∣dft

)

tf-idf: wtd = tftd idft

Terms occurring in lesser documents are more discriminative.
�erefore their counts are weighted with a higher idf factor. Since ∣D∣
is usually large, we use the log of the inverse document frequency.

Note, however, that terms occurring in all documents get a weight 0.

9 / 28

Vectors and documents

Reminder:

0 5 10 15 20 25 30

0

0.5

1

1.5 log10 x

10 / 28

Measuring vector distance/similarity
Each document d is characterized with respect to a vocabulary
V = {t1, . . . , t∣V ∣} by a vector, for instance

⟨tft1,d idft1 , . . . , tft∣V ∣,d idft∣V ∣⟩

if we use tf-idf.

In order to compare documents, we need some metric for the distance
of two vectors. One possibility is the Euclidian distance.

�e length of a vector is de�ned as

∣v⃗∣ =

¿
Á
ÁÀ

n

∑
i=1

v2i

We de�ne the Euclidian distance of two vectors v⃗, w⃗ as

∣v⃗ − w⃗∣ =

¿
Á
ÁÀ

n

∑
i=1
(vi −wi)

2

11 / 28

Measuring vector distance/similarity

In order to use the Euclidian distance, we �rst have to normalize the
vectors, i.e., we use

∣
v⃗
∣v⃗∣
−

w⃗
∣w⃗∣
∣ =

¿
Á
ÁÀ

n

∑
i=1
(
vi
∣v⃗∣
−

wi

∣w⃗∣
)
2

Alternatively, we can also use a metric for the similarity of vectors.

�e most common metric used in NLP for vector similarity is the
cosine of the angle between the vectors.

12 / 28

Measuring vector distance/similarity
Underlying idea: We use the dot product from linear algebra as a
similarity metric: For vectors v⃗, w⃗ of dimension n,

v⃗ ⋅ w⃗ =
n

∑
i=1

viwi

Example: dot product
Consider the following term-document matrix:

d1 d2 d3 d4
t1 1 2 8 50
t2 2 8 3 20
t3 30 120 0 2

d1, d2: v⃗d1 ⋅ v⃗d2 = ⟨1, 2, 30⟩ ⋅ ⟨2, 8, 120⟩ = 3618
d1, d3: v⃗d1 ⋅ v⃗d4 = 200
But: v⃗d2 ⋅ v⃗d4 = 500 and v⃗d3 ⋅ v⃗d4 = 460

13 / 28

Measuring vector distance/similarity

�e dot product favors long vectors. �erefore, we use the
normalized dot product, i.e., we divide by the lengths of the two
vectors.

Cosine similarity metric

CosSim(v⃗, w⃗) =
v⃗ ⋅ w⃗
∣v⃗∣ ∣w⃗∣

=

n

∑
i=1

viwi

¿
Á
ÁÀ

n

∑
i=1

v2i

¿
Á
ÁÀ

n

∑
i=1

w2
i

= cosφ

where φ is the angle between v⃗ and w⃗.

14 / 28

Measuring vector distance/similarity

Reminder: �is is how the cosine looks like for angles between 0 and
90 (with all vector components ≥ 0, other angles cannot occur):

0 20 40 60 80

0

0.2

0.4

0.6

0.8

1 cos(x)

15 / 28

Measuring vector distance/similarity

Example: cosine similarity
Consider again the following term-document matrix:

d1 d2 d3 d4
t1 1 2 8 50
t2 2 8 3 20
t3 30 120 0 2
∣v⃗d ∣ 30,08 120,28 8,54 53,89

Cosine values:
d1 d2 d3

d2 1
d3 0.05 0.04
d4 0.09 0.08 1

(�e cosine values for d1, d2 and for d3, d4 are rounded.)

16 / 28

Measuring vector distance/similarity
Cosine similarity is not invariant to shi�s.

Cosine

1 2 3

1

2

3 Adding 1 to all components
increases the cosine similarity.

�e Euclidian distance, however,
remains the same (if used without
normalization).

An alternative is the Pearson correlation:
Pearson correlation

Let v = ∑
n
i=1 vi
n be the means of the vector components.

Corr(v⃗, w⃗) = ∑
n
i=1(vi − v)(wi −w)
∣v⃗ − v∣ ∣w⃗ −w∣

= CosSim(v⃗ − v, w⃗ −w)

where ⟨v1, . . . , vn⟩ − c = ⟨v1 − c, . . . , vn − c⟩.
17 / 28

Measuring vector distance/similarity
Two other widely used similarity measures are Jaccard and Dice. �e
underlying idea is that we measure the overlap in the features.
�erefore in both metrics, we include

n

∑
i=1

min(vi,wi)

Jaccard similarity measure

simJaccard(v⃗, w⃗) = ∑
n
i=1min(vi,wi)

∑
n
i=1max(vi,wi)

Dice is very similar except that it does not take the max but the
average in the denominator:

Dice similarity measure

simDice(v⃗, w⃗) =
2∑n

i=1min(vi,wi)

∑
n
i=1 vi +wi

18 / 28

k nearest neighbors

In the following, we are concerned with the task of classifying a
document by assigning it a label drawn from some �nite set of labels.

Our training data consists of a set D of documents, each of which is in
a unique class c ∈ C.

Documents are represented as vectors, i.e., our task amounts to
classifying a new vector, given the classes of the training vectors.

Idea of k nearest neighbors (kNN): in order to classify a new
document d, take the majority class of the k nearest neighbors of d in
the training document vector space.

19 / 28

k nearest neighbors
Example: k nearest neighbors
Task: classify �ctional texts in topic classes l (=love) and c (=crime).
Training: Class l Class c new docs:
terms d1 d2 d3 d4 d5 d6 d7
love 10 8 7 0 1 5 1
kiss 5 6 4 1 0 6 0
inspector 2 0 0 12 8 2 12
murderer 0 1 0 20 56 0 4
∣v⃗d ∣ 11.36 10.05 8.06 23.35 56.58 8.06 12.69

Before comparing vectors, we should normalize them. (�e de�nition
of the cosine similarity above includes normalization.) I.e., every
v⃗ = ⟨v1, . . . vn⟩ gets replaced with

v⃗
∣v⃗∣

= ⟨
v1
∣v⃗∣
, . . . ,

vn
∣v⃗∣
⟩ where ∣v⃗∣ =

¿
Á
ÁÀ

n

∑
i=1

v2i

20 / 28

k nearest neighbors

Example continued
Normalized data:
Training: Class l Class c new docs:
terms d1 d2 d3 d4 d5 d6 d7
love 0.88 0.8 0.87 0 0.02 0.62 0.08
kiss 0.44 0.6 0.5 0.04 0 0.74 0
inspector 0.18 0 0 0.51 0.14 0.25 0.95
murderer 0 0.1 0 0.86 0.99 0 0.32

Euclidian distances:
d1 d2 d3 d4 d5

d6 0.4 0.35 0.43 1.3 1.38
d7 1.24 1.35 1.37 0.7 1.05

21 / 28

k nearest neighbors

Example continued
Visualization of the dimensions love and murderer including the k
nearest neighbors of each of the new documents d6, d7 for k = 1 and
k = 3:

l
l
l

c
c

d6

d7

For both ks, the majority class of the k nearest neighbors of d6 is l
while the one of d7 is c.

22 / 28

k nearest neighbors
Some notation:

Sk(d) is the set of the k nearest neighbor documents of a new
document d.
v⃗(d) is the vector of a document d.
We de�ne Ic ∶ Sk(d) → {0, 1} for a class c and a document d as
Ic(dt) = 1 if the class of dt is c, otherwise Ic(dt) = 0.

�en kNN assigns the following score to each class c, given a
document d that has to be classi�ed:

score(c, d) = ∑
dt∈Sk(d)

Ic(dt)

�e classi�er then assigns to d the class c from the set of classes C
with the highest score:

ĉ = argmax
c∈C

score(c, d)

23 / 28

k nearest neighbors

Choice of the k:

usually an odd number;
k = 3 or k = 5 are frequent choices but sometimes much larger
values are also used;
k can be choosen according to experiments during training on
held-out data.

24 / 28

k nearest neighbors

kNN can be used as a probabilistic classi�er: We can de�ne

P(c∣d) =
∑dt∈Sk(d) Ic(dt)

k

Example continued

Euclidian distances:
d1 d2 d3 d4 d5

d6 0.4 0.35 0.43 1.3 1.38
d7 1.24 1.35 1.37 0.7 1.05

Probabilities:
k = 1 S1(d6) = {d2},P(l∣d6) = 1,P(c∣d6) = 0

S1(d7) = {d4},P(l∣d7) = 0,P(c∣d7) = 1
k = 3 S3(d6) = {d1, d2, d3},P(l∣d6) = 1,P(c∣d6) = 0

S3(d7) = {d1, d4, d5},P(l∣d7) = 1
3 ,P(c∣d7) =

2
3

25 / 28

k nearest neighbors

Problem: For k > 1, the majority vote does not take the individual
distances of the k nearest neighbors to v⃗(d) into consideration.

Example
k = 5, classes A and B, document d has to be classi�ed. Assume we
have the following situation:

A
A

A

Bd
B
B

�e classi�er would assign B. But the two A documents in S5(d) are
much nearer to d than the three B documents.

26 / 28

k nearest neighbors

Possible solution:
weight the elements in Sk(d) be their similarity to d.

�is gives the following revised de�nition of the score, including the
cos similarity measure:

score(c, d) = ∑
dt∈Sk(d)

Ic(dt) cos(v⃗(dt), v⃗(d))

where v⃗(d) is the vector of some document d.

27 / 28

References

Jurafsky, Daniel & James H. Martin. 2009. Speech and language processing. an
introduction to natural language processing, computational linguistics, and speech
recognition Prentice Hall Series in Articial Intelligence. Pearson Education
International second edition edn.

Jurafsky, Daniel & James H. Martin. 2015. Speech and language processing. an
introduction to natural language processing, computational linguistics, and
speech recognition. Dra� of the 3rd edition.

Manning, Christopher D., Prabhakar Raghavan & Hinrich Schütze. 2008. Introduction
to information retrieval. Cambridge University Press.

28 / 28

	Motivation
	Vectors and documents
	Measuring vector distance/similarity
	k nearest neighbors

